[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Editorial Board::
Executive Members::
Instruction to Authors::
Peer Review::
Articles Archive::
Indexing Databases::
Contact Us::
Site Facilities::
::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Volume 25, Issue 2 (7-2023) ::
J Gorgan Univ Med Sci 2023, 25(2): 75-82 Back to browse issues page
Efficacy of Fluoroquinolones on Methicillin-Resistant Staphylococcus aureus Strains Isolated from External Ocular Infections
Mehri Hosseini1 , Leila Fozouni * 2, Ania Ahani Azari3
1- M.Sc in Microbiology, Department of Microbiology, Gorgan Branch, Islamic Azad University, Gorgan, Iran.
2- Assistant Professor, Department of Microbiology, Gorgan Branch, Islamic Azad University, Gorgan, Iran. , leila.fozouni@iau.ac.ir
3- Associate Professor, Department of Microbiology, Gorgan Branch, Islamic Azad University, Gorgan, Iran.
Abstract:   (2644 Views)

Background and Objective: Staphylococcus aureus is one of the most common causes of bacterial keratitis and conjunctivitis. This study was done to determine the efficacy of fluoroquinolones on Methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from external ocular infections.
Methods: This descriptive-analytical study was conducted on 187 pateiants (2 months to 61 years old) with symptoms of conjunctivitis and keratitis who were hospitalized or referred to the emergency department of hospitals in Golestan and Mazandaran provinces, Iran during 2020-22. The samples were taken from the external infection of the patients’ eyes. Methicillin-resistant Staphylococcus aureus isolates were identified by standard phenotypic microbiological and molecular detection (PCR) methods. The broth microdilution method determined sensitivity to quinolones and the minimum inhibitory concentration (MIC) in the 0.06-64 μg/ml range.
Results: The frequency of ocular MRSA isolates (n=52) was significantly higher in spring, females and patients aged 1-30 years (P<0.05). Among the MRSA isolates causing conjunctivitis, the highest rates of resistance were observed against ciprofloxacin (n=18, 48.64%), enoxacin (n=17, 45.95 %), and ofloxacin (n=17, 45.95%). The MIC of gemifloxacin that inhibited the growth of 90% of MRSA isolates from conjunctivitis (MIC90=0.25 μg/ml) was 32-fold lower than that of ciprofloxacin.
Conclusion: Depending on the season and age, staphylococcus aureus may be the most common cause of bacterial conjunctivitis and keratitis. Considering the in vitro antibacterial potential of gemifloxacin, this antibiotic can be used to treat the bacterial external eye infections.

Keywords: Staphylococcus aureus [MeSH], Conjunctivitis [MeSH], Keratitis [MeSH], Quinolones [MeSH], Drug Resistance [MeSH]
Article ID: Vol25-24
Full-Text [PDF 701 kb]   (5605 Downloads)    
Type of Study: Original Articles | Subject: Microbiology
References
1. Green M, Carnt N, Apel A, Stapleton F. Queensland Microbial Keratitis Database: 2005-2015. Br J Ophthalmol. 2019 Oct; 103(10): 1481-86. doi: 10.1136/bjophthalmol-2018-312881. [DOI] [PubMed]
2. Khan M, Stapleton F, Willcox MDP. Susceptibility of Contact Lens-Related Pseudomonas aeruginosa Keratitis Isolates to Multipurpose Disinfecting Solutions, Disinfectants, and Antibiotics. Transl Vis Sci Technol. 2020 Apr; 9(5): 2. doi: 10.1167/tvst.9.5.2. [DOI] [PubMed]
3. Getahun E, Gelaw B, Assefa A, Assefa Y, Amsalu A. Bacterial pathogens associated with external ocular infections alongside eminent proportion of multidrug resistant isolates at the University of Gondar Hospital, northwest Ethiopia. BMC Ophthalmol. 2017 Aug; 17(1): 151. doi: 10.1186/s12886-017-0548-6. [DOI] [PubMed]
4. Fukuda M, Ohashi H, Matsumoto C, Mishima S, Shimomura Y. Methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative Staphylococcus ocular surface infection efficacy of chloramphenicol eye drops. Cornea. 2002 Oct; 21(7 Suppl): S86-9. doi: 10.1097/01.ico.0000263125.99262.42. [DOI] [PubMed]
5. Thomas RK, Melton R, Asbell PA. Antibiotic resistance among ocular pathogens: current trends from the ARMOR surveillance study (2009-2016). Clin Optom (Auckl). 2019 Mar; 11: 15-26. doi: 10.2147/OPTO.S189115. [DOI] [PubMed]
6. Grzybowski A, Brona P, Kim SJ. Microbial flora and resistance in ophthalmology: a review. Graefes Arch Clin Exp Ophthalmol. 2017 May; 255(5): 851-62. doi: 10.1007/s00417-017-3608-y. [DOI] [PubMed]
7. Lim WW, Wu P, Bond HS, Wong JY, Ni K, Seto WH, et al. Determinants of methicillin-resistant Staphylococcus aureus (MRSA) prevalence in the Asia-Pacific region: A systematic review and meta-analysis. J Glob Antimicrob Resist. 2019 Mar; 16: 17-27. doi: 10.1016/j.jgar.2018.08.014. [DOI] [PubMed]
8. Vestergaard M, Frees D, Ingmer H. Antibiotic Resistance and the MRSA Problem. Microbiol Spectr. 2019 Mar; 7(2). doi: 10.1128/microbiolspec.GPP3-0057-2018. [DOI] [PubMed]
9. Baum J, Barza M. The evolution of antibiotic therapy for bacterial conjunctivitis and keratitis: 1970-2000. Cornea. 2000 Sep; 19(5): 659-72. doi: 10.1097/00003226-200009000-00011. [DOI] [PubMed]
10. Fozouni L, Askari H, Pordeli H R. Frequency Distribution of Fluoroquinolones-Resistant Enterococcus faecalis Isolates from Patients with Prostatitis in Golestan Province, Iran. Med Lab J. 2019; 13(4): 29-33. doi: 10.29252/mlj.13.4.29. [View at Publisher] [DOI]
11. Teweldemedhin M, Saravanan M, Gebreyesus A, Gebreegziabiher D. Ocular bacterial infections at Quiha Ophthalmic Hospital, Northern Ethiopia: an evaluation according to the risk factors and the antimicrobial susceptibility of bacterial isolates. BMC Infect Dis. 2017 Mar; 17(1): 207. doi: 10.1186/s12879-017-2304-1. [DOI] [PubMed]
12. Lautenbach E, Metlay JP, Weiner MG, Bilker WB, Tolomeo P, Mao X, et al. Gastrointestinal tract colonization with fluoroquinolone-resistant Escherichia coli in hospitalized patients: changes over time in risk factors for resistance. Infect Control Hosp Epidemiol. 2009 Jan; 30(1): 18-24. doi: 10.1086/592703. [DOI] [PubMed]
13. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 30th ed. CLSI supplement M100. Wayne: Clinical and Laboratory Standards Institute. 2020.
14. Shaeri M, Nazari-Alam A, Fathizadeh H, Moniri R, Akbari H, Mansoori M, et al. Bacterial Etiology and Antibiotic Susceptibility of Conjunctivitis Patients' Isolates in Kashan, Iran. Adv Biomed Res. 2020 Sep; 9: 49. doi: 10.4103/abr.abr_118_20. [DOI] [PubMed]
15. Tarabishy AB, Hall GS, Procop GW, Jeng BH. Bacterial culture isolates from hospitalized pediatric patients with conjunctivitis. Am J Ophthalmol. 2006 Oct; 142(4): 678-80. doi: 10.1016/j.ajo.2006.04.063. [DOI] [PubMed]
16. McGilligan VE, Gregory-Ksander MS, Li D, Moore JE, Hodges RR, Gilmore MS, et al. Staphylococcus aureus activates the NLRP3 inflammasome in human and rat conjunctival goblet cells. PLoS One. 2013 Sep; 8(9): e74010. doi: 10.1371/journal.pone.0074010. [DOI] [PubMed]
17. Schechter BA, Sheppard JD, Sanfilippo CM, DeCory HH, Asbell PA. An Evaluation of Staphylococci from Ocular Surface Infections Treated Empirically with Topical Besifloxacin: Antibiotic Resistance, Molecular Characteristics, and Clinical Outcomes. Ophthalmol Ther. 2020 Mar; 9(1): 159-73. doi: 10.1007/s40123-019-00223-y. [DOI] [PubMed]
18. Sauer A, Greth M, Letsch J, Becmeur PH, Borderie V, Daien V, et al. Contact Lenses and Infectious Keratitis: From a Case-Control Study to a Computation of the Risk for Wearers. Cornea. 2020 Jun; 39(6): 769-74. doi: 10.1097/ICO.0000000000002248. [DOI] [PubMed]
19. Shanmuganathan VA, Armstrong M, Buller A, Tullo AB. External ocular infections due to methicillin-resistant Staphylococcus aureus (MRSA). Eye (Lond). 2005 Mar; 19(3): 284-91. doi: 10.1038/sj.eye.6701465. [DOI] [PubMed]
20. Blomquist PH. Methicillin-resistant Staphylococcus aureus infections of the eye and orbit (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc. 2006; 104: 322-45. [PubMed]
21. MacFadden DR, McGough SF, Fisman D, Santillana M, Brownstein JS. Antibiotic Resistance Increases with Local Temperature. Nat Clim Chang. 2018 Jun; 8(6): 510-14. doi: 10.1038/s41558-018-0161-6. [DOI] [PubMed]
22. Marangon FB, Miller D, Muallem MS, Romano AC, Alfonso EC. Ciprofloxacin and levofloxacin resistance among methicillin-sensitive Staphylococcus aureus isolates from keratitis and conjunctivitis. Am J Ophthalmol. 2004 Mar; 137(3): 453-58. doi: 10.1016/j.ajo.2003.10.026. [DOI] [PubMed]
23. Sharma V, Sharma S, Garg P, Rao GN. Clinical resistance of Staphylococcus keratitis to ciprofloxacin monotherapy. Indian J Ophthalmol. 2004 Dec; 52(4): 287-92. [PubMed]
24. Goossens H, Ferech M, Vander Stichele R, Elseviers M. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet. 2005 Feb; 365(9459): 579-87. doi: 10.1016/S0140-6736(05)17907-0. [DOI] [PubMed]
25. Sheikh A, Hurwitz B. Topical antibiotics for acute bacterial conjunctivitis: Cochrane systematic review and meta-analysis update. Br J Gen Pract. 2005 Dec; 55(521): 962-64. [PubMed]
26. Watson S, Cabrera-Aguas M, Khoo P, Pratama R, Gatus BJ, Gulholm T, et al. Keratitis antimicrobial resistance surveillance program, Sydney, Australia: 2016 Annual Report. Clin Exp Ophthalmol. 2019 Jan; 47(1): 20-25. doi: 10.1111/ceo.13364. [DOI] [PubMed]
27. Samarawickrama C, Chan E, Daniell M. Rising fluoroquinolone resistance rates in corneal isolates: Implications for the wider use of antibiotics within the community. Healthcare Infection. 2015; 20(3-4): 128-33. doi: 10.1071/HI15014 [Link] [DOI]
28. Fozouni L, Khosravi M, Pordeli HR, Mokaram R. [Activity of Gemifloxacin against Levofloxacin – and Ciprofloxacin-Resistant Escherichia coli Displaying DNA gyrase Isolated from Patients Admitted to the intensive care unit]. Iranian Journal of Infectious Diseases. 2019; 23(83): 67-74. [Article in Persian] [Link]
29. Wu X, Jiang H, Xu Y, Yue W, Yang L, Song Z, et al. Efficacy of gemifloxacin for the treatment of experimental Staphylococcus aureus keratitis. J Ocul Pharmacol Ther. 2012 Aug; 28(4): 420-27. doi: 10.1089/jop.2011.0229. [DOI] [PubMed]
30. File TM Jr, Schlemmer B, Garau J, Cupo M, Young C. Efficacy and safety of gemifloxacin in the treatment of community-acquired pneumonia: a randomized, double-blind comparison with trovafloxacin. J Antimicrob Chemother. 2001 Jul; 48(1): 67-74. doi: 10.1093/jac/48.1.67. [DOI] [PubMed]
31. King A, May J, French G, Phillips I. Comparative in vitro activity of gemifloxacin. J Antimicrob Chemother. 2000 Apr; 45 Suppl 1: 1-12. doi: 10.1093/jac/45.suppl_3.1. [DOI] [PubMed]
Send email to the article author


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseini M, Fozouni L, Ahani Azari A. Efficacy of Fluoroquinolones on Methicillin-Resistant Staphylococcus aureus Strains Isolated from External Ocular Infections. J Gorgan Univ Med Sci 2023; 25 (2) :75-82
URL: http://goums.ac.ir/journal/article-1-4243-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 25, Issue 2 (7-2023) Back to browse issues page
مجله دانشگاه علوم پزشکی گرگان Journal of Gorgan University of Medical Sciences
Persian site map - English site map - Created in 0.06 seconds with 36 queries by YEKTAWEB 4660
Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)