1. Hoseinzadeh E, Samargandi M R, Alikhani M Y, Roshanaei G, Asgari G. [Antimicrobial Efficacy of Zinc Oxide Nanoparticles Suspension Against Gram Negative and Gram Positive Bacteria]. Iranian Journal of Health and Environment. 2012; 5(3): 331-42. [Article in Persian] 2. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett. 2007; 90(213902): 213902-1-213902-3. DOI: 10.1063/1.2742324 3. Gunalan S, Sivaraj R, Rajendran V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Pro Nat Sci-Mater. 2012; 22(6): 695-700. https://doi.org/10.1016/j.pnsc.2012.11.015 4. Ghourchian S, Douraghi M, Baghani A, Soltan Dallal M. Bacillus cereus Assessment in Dried Vegetables Distributed in Tehran, Iran. J Food Qual Hazards Control. 2018; 5(1): 29-32. 5. Rahimi Nadi Z, Zahraei Salehi T, Ashrafi Tamai I, Rahimi Foroushani A, Sillanpaa M, Soltan Dallal MM. Evaluation of antibiotic resistance and prevalence of common Salmonella enterica serovars isolated from foodborne outbreaks. Microchemical Journal. 2020; 155: 104660. https://doi.org/10.1016/j.microc.2020.104660 6. Alswat AA, Ahmad MB, Saleh TA, Hussein MZB, Ibrahim NA. Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite. Mater Sci Eng C Mater Biol Appl. 2016 Nov; 68: 505-11. DOI: 10.1016/j.msec.2016.06.028 7. Masiha AR, Baradaran M, Isazadeh K. [Evaluate the inhibitory activity of ZnO nanoparticles against standard strains and isolates of Staphylococcus aureus and Escherichia coli isolated from food samples]. Journal of Food Microbiology. 2017; 4(1): 63-74. [Article in Persian] 8. Hosseinkhani P, Zand AM, Imani S, Rezayi M, Rezaei Zarchi S. Determining the antibacterial effect of ZnO nanoparticle against the pathogenic bacterium, Shigella dysenteriae (type 1). Int J Nano Dimens. 2011; 1(4): 279-85. DOI: 10.7508/IJND.2010.04.006 9. Liu Y, He L, Mustapha A, Li H, Hu Z, Lin M. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. J Appl Microbiol. 2009 Oct; 107(4): 1193-201. https://doi.org/10.1111/j.1365-2672.2009.04303.x 10. Sawai J, Yoshikawa T. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol. 2004; 96(4): 803-809. DOI: 10.1111/j.1365-2672.2004.02234.x 11. Parish ME. Orange juice quality after treatment by ZnO nanoparticle or thermal pasteurization isostatic high pressure. Lebenson Wiss Technol. 1998; 31(5): 439-42. 12. Adams LK, Lyon DY, Alvarez PJJ. Comparative ecotoxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research. 2006; 40(19): 3527-32. https://doi.org/10.1016/j.watres.2006.08.004 13. Hosseini SS, Joshagani HR, Eskandari M. [Colorimetric MTT assessment of antifungal activity of ZnO nanowires against candida dubliensis bioflm]. Jundishapur Sci Med J. 2013; 12(1): 69-80. [Article in Persian] 14. Zhang H, Chen G. Potent antimicrobial activity of Ag/TiO2 nanocomposite powder synthesized by a one-pot sol-gel method. Environ Sci Technol. 2009 Apr; 43(8): 2905-10. DOI: 10.1021/es803450f 15. Sinha R, Karan R, Sinha A, Khare SK. Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour Technol. 2011 Jan; 102(2): 1516-20. DOI: 10.1016/j.biortech.2010.07.117 16. Emami-Karvani Z, Chehrazi P. Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. African J Microbiol Res. 2011; 5(12): 1368-73. https://doi.org/10.5897/AJMR10.159 17. Baradaran Ketabchi M, Iessazadeh Kh, Massiha A. [Evaluate the inhibitory activity of ZnO nanoparticles against standard strains and isolates of Staphylococcus aureus and Escherichia coli isolated from food samples]. Journal of Food Microbiology. 2017; 4(1): 63-74. [Article in Persian]
|