[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Journal Information::
Indexing Sources::
Editorial Board::
Executive Members::
Articles Archive::
Instruction to Authors::
Contact Us::
Site Facilities::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Volume 21, Issue 4 (12-2019) ::
J Gorgan Univ Med Sci 2019, 21(4): 1-13 Back to browse issues page
A review on the genetics of autosomal recessive primary microcephaly
Atefeh Sharifinya1 , Morteza Oladnabi * 2
1- M.Sc Student in Human Genetic, Department of Medical Genetics, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
2- Assistant Professor, Gorgan Congenital Malformations Research Center, Department of Medical Genetics, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran , oladnabidozin@yahoo.com
Abstract:   (8255 Views)
Autosomal recessive primary microcephaly; MCPH is a rare neurologically condition observed in new born at the birth. Most patients suffer from moderate to severe intellectual disability. In this review article, we introduce MCPH disorder; include all of the chromosomal locations, kind of MCPH genes and numbers of mutations, functional efficacy, how to identify the genes separately and diagnostic algorithm of articles and data base such as OMIM, HGMD. 23 locations genes (MCPH1-23) have been recognized causes primary microcephaly in different population, so far. Function of them is to correct orientation of mitosis spindles, duplication of DNA, organization and function of centrosome, transfer of vesicles, transcription regulation, response to DNA lesion, etc. According to investigations, MCPH in Iran and Pakistan population is common because of more consanguinity marriage. MCPH1 and MCPH5 genes are more common in Iran. Recent advances in molecular biological techniques and animal models have helped to identify the genetic cause of microcephaly and open up the horizons for researchers in the field, and also elucidating of the underlying molecular mechanisms will improve our understanding of the structure and function of the brain.
Keywords: Microcephaly, Intellectual disability, Gene
Full-Text [PDF 370 kb]   (11086 Downloads)    
Type of Study: Review Article | Subject: Genetic
1. Naveed M, Kazmi SK, Amin M, Asif Z, Islam U, Shahid K, et al. Comprehensive review on the molecular genetics of autosomal recessive primary microcephaly (MCPH). Genet Res (Camb). 2018 Aug; 100: e7. doi: 10.1017/S0016672318000046
2. Takimoto M. D40/KNL1/CASC5 and autosomal recessive primary microcephaly. Congenit Anom (Kyoto). 2017 Nov; 57(6): 191-96. doi: 10.1111/cga.12252
3. Mochida GH, Walsh CA. Genetic basis of developmental malformations of the cerebral cortex. Arch Neurol. 2004 May; 61(5): 637-40. doi: 10.1001/archneur.61.5.637
4. Genin A, Desir J, Lambert N, Biervliet M, Van Der Aa N, Pierquin G, et al. Kinetochore KMN network gene CASC5 mutated in primary microcephaly. Hum Mol Genet. 2012 Dec; 21(24): 5306-17. doi: 10.1093/hmg/dds386
5. Pulvers JN, Journiac N, Arai Y, Nardelli J. MCPH1: a window into brain development and evolution. Front Cell Neurosci. 2015 Mar; 9: 92. doi: 10.3389/fncel.2015.00092
6. Oladnabi M, Musante L, Larti F, Hu H, Abedini SS, Wienker T, et al. New evidence for the role of calpain 10 in autosomal recessive intellectual disability: identification of two novel nonsense variants by exome sequencing in Iranian families. Arch Iran Med. 2015 Mar; 18(3): 179-84. doi: 0151803/AIM.008
7. Hu H, Kahrizi K, Musante L, Fattahi Z, Herwig R, Hosseini M, et al. Genetics of intellectual disability in consanguineous families. Mol Psychiatry. 2019 Jul; 24(7): 1027-39. doi: 10.1038/s41380-017-0012-2
8. Kazeminasab S, Taskiran II, Fattahi Z, Bazazzadegan N, Hosseini M, Rahimi M, et al. CNKSR1 gene defect can cause syndromic autosomal recessive intellectual disability. Am J Med Genet B Neuropsychiatr Genet. 2018 Dec; 177(8): 691-99. doi: 10.1002/ajmg.b.32648
9. Woods CG, Bond J, Enard W. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am J Hum Genet. 2005 May; 76(5): 717-28. doi: 10.1086/429930
10. Saki-Malehi A, Seddigh-Rad G, Sayyahi A, Mousavi-Far F, Veysi M, Rahim F. The pattern of inherited microcephaly and role of the consanguineous marriage: A study from Southwestern Iran. Ethiopian Journal of Health Development. 2017; 31(2): 119-23.
11. Darvish H, Esmaeeli-Nieh S, Monajemi GB, Mohseni M, Ghasemi-Firouzabadi S, Abedini SS, et al. A clinical and molecular genetic study of 112 Iranian families with primary microcephaly. J Med Genet. 2010 Dec; 47(12): 823-8. doi: 10.1136/jmg.2009.076398
12. Zaqout S, Morris-Rosendahl D, Kaindl AM. Autosomal Recessive Primary Microcephaly (MCPH): An Update. Neuropediatrics. 2017 Jun; 48(3): 135-42. doi: 10.1055/s-0037-1601448
13. Akbariazar E, Ebrahimpour M, Akbari S, Arzhanghi S, Abedini SS, Najmabadi H, et al. A Novel Deletion Mutation in ASPM Gene in an Iranian Family with Autosomal Recessive Primary Microcephaly. Iran J Child Neurol. 2013; 7(2): 23-30.
14. Ashwal S, Michelson D, Plawner L, Dobyns WB. Practice parameter: Evaluation of the child with microcephaly (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2009 Sep; 73(11): 887-97. doi: 10.1212/WNL.0b013e3181b783f7
15. Mahmood S, Ahmad W, Hassan MJ. Autosomal Recessive Primary Microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum. Orphanet J Rare Dis. 2011 Jun; 6: 39. doi: 10.1186/1750-1172-6-39
16. Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. A developmental and genetic classification for malformations of cortical development: update 2012. Brain. 2012 May; 135(Pt 5): 1348-69. doi: 10.1093/brain/aws019
17. Arroyo M, Kuriyama R, Trimborn M, Keifenheim D, Canuelo A, Sanchez A, et al. MCPH1, mutated in primary microcephaly, is required for efficient chromosome alignment during mitosis. Scientific Reports. 2017; 7: 13019. doi: 10.1038/s41598-017-12793-7
18. Faheem M, Naseer MI, Rasool M, Chaudhary AG, Kumosani TA, Ilyas AM, et al. Molecular genetics of human primary microcephaly: an overview. BMC Medical Genomics. 2015; 8(1): S4. https://doi.org/10.1186/1755-8794-8-S1-S4
19. Jackson AP, McHale DP, Campbell DA, Jafri H, Rashid Y, Mannan J, et al. Primary autosomal recessive microcephaly (MCPH1) maps to chromosome 8p22-pter. Am J Hum Genet. 1998 Aug; 63(2): 541-6. doi: 10.1086/301966
20. Bilguvar K, Ozturk AK, Louvi A, Kwan KY, Choi M, Tatli B, et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature. 2010 Sep; 467(7312): 207-10. doi: 10.1038/nature09327
21. Moynihan L, Jackson AP, Roberts E, Karbani G, Lewis I, Corry P, et al. A third novel locus for primary autosomal recessive microcephaly maps to chromosome 9q34. Am J Hum Genet. 2000 Feb; 66(2): 724-27. doi: 10.1086/302777
22. Jamieson CR, Govaerts C, Abramowicz MJ. Primary autosomal recessive microcephaly: homozygosity mapping of MCPH4 to chromosome 15. Am J Hum Genet. 1999 Nov; 65(5): 1465-69. doi: 10.1086/302640
23. Jamieson CR, Fryns JP, Jacobs J, Matthijs G, Abramowicz MJ. Primary autosomal recessive microcephaly: MCPH5 maps to 1q25-q32. Am J Hum Genet. 2000 Dec; 67(6): 1575-77. doi: 10.1086/316909
24. Leal GF, Roberts E, Silva EO, Costa SM, Hampshire DJ, Woods CG. A novel locus for autosomal recessive primary microcephaly (MCPH6) maps to 13q12.2. J Med Genet. 2003 Jul; 40(7): 540-42. doi: 10.1136/jmg.40.7.540
25. Kumar A, Girimaji SC, Duvvari MR, Blanton SH. Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly. Am J Hum Genet. 2009 Feb; 84(2): 286-90. doi: 10.1016/j.ajhg.2009.01.017
26. Hussain MS, Baig SM, Neumann S, Nurnberg G, Farooq M, Ahmad I, et al. A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function. Am J Hum Genet. 2012 May; 90(5): 871-78. doi: 10.1016/j.ajhg.2012.03.016
27. Guernsey DL, Jiang H, Hussin J, Arnold M, Bouyakdan K, Perry S, et al. Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. Am J Hum Genet. 2010 Jul; 87(1): 40-51. doi: 10.1016/j.ajhg.2010.06.003
28. Yang YJ, Baltus AE, Mathew RS, Murphy EA, Evrony GD, Gonzalez DM, et al. Microcephaly gene links trithorax and REST/NRSF to control neural stem cell proliferation and differentiation. Cell. 2012 Nov; 151(5): 1097-112. doi: 10.1016/j.cell.2012.10.043
29. Awad S, Al-Dosari MS, Al-Yacoub N, Colak D, Salih MA, Alkuraya FS, et al. Mutation in PHC1 implicates chromatin remodeling in primary microcephaly pathogenesis. Hum Mol Genet. 2013 Jun; 22(11): 2200-13. doi: 10.1093/hmg/ddt072
30. Hussain MS, Baig SM, Neumann S, Peche VS, Szczepanski S, Nurnberg G, et al. CDK6 associates with the centrosome during mitosis and is mutated in a large Pakistani family with primary microcephaly. Hum Mol Genet. 2013 Dec; 22(25): 5199-214. doi: 10.1093/hmg/ddt374
31. Mirzaa GM, Vitre B, Carpenter G, Abramowicz I, Gleeson JG, Paciorkowski AR, et al. Mutations in CENPE define a novel kinetochore-centromeric mechanism for microcephalic primordial dwarfism. Hum Genet. 2014 Aug; 133(8): 1023-39. doi: 10.1007/s00439-014-1443-3
32. Khan MA, Rupp VM, Orpinell M, Hussain MS, Altmuller J, Steinmetz MO, et al. A missense mutation in the PISA domain of HsSAS-6 causes autosomal recessive primary microcephaly in a large consanguineous Pakistani family. Hum Mol Genet. 2014 Nov; 23(22): 5940-49. doi: 10.1093/hmg/ddu318
33. Alakbarzade V, Hameed A, Quek DQ, Chioza BA, Baple EL, Cazenave-Gassiot A, et al. A partially inactivating mutation in the sodium-dependent lysophosphatidylcholine transporter MFSD2A causes a non-lethal microcephaly syndrome. Nat Genet. 2015 Jul; 47(7): 814-17. doi: 10.1038/ng.3313
34. Yamamoto S, Jaiswal M, Charng WL, Gambin T, Karaca E, Mirzaa G, et al. A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell. 2014 Sep; 159(1): 200-14. doi: 10.1016/j.cell.2014.09.002
35. Basit S, Al-Harbi KM, Alhijji SA, Albalawi AM, Alharby E, Eldardear A, et al. CIT, a gene involved in neurogenic cytokinesis, is mutated in human primary microcephaly. Hum Genet. 2016 Oct; 135(10): 1199-207. doi: 10.1007/s00439-016-1724-0
36. Kadir R, Harel T, Markus B, Perez Y, Bakhrat A, Cohen I, et al. ALFY-Controlled DVL3 Autophagy Regulates Wnt Signaling, Determining Human Brain Size. PLoS Genet. 2016 Mar; 12(3): e1005919. doi: 10.1371/journal.pgen.1005919
37. DiStasio A, Driver A, Sund K, Donlin M, Muraleedharan RM, Pooya S, et al. Copb2 is essential for embryogenesis and hypomorphic mutations cause human microcephaly. Hum Mol Genet. 2017 Dec; 26(24): 4836-48. doi: 10.1093/hmg/ddx362
38. Moawia A, Shaheen R, Rasool S, Waseem SS, Ewida N, Budde B, et al. Mutations of KIF14 cause primary microcephaly by impairing cytokinesis. Ann Neurol. 2017 Oct; 82(4): 562-77. doi: 10.1002/ana.25044
39. Martin CA, Murray JE, Carroll P, Leitch A, Mackenzie KJ, Halachev M, et al. Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis. Genes Dev. 2016 Oct; 30(19): 2158-72.
40. Woods CG, Parker A. Investigating microcephaly. Arch Dis Child. 2013 Sep; 98(9): 707-13. doi: 10.1136/archdischild-2012-302882
41. Hanzlik E, Gigante J. Microcephaly. Children (Basel). 2017 Jun; 4(6). pii: E47. doi: 10.3390/children4060047
42. Park JS, Lee MK, Rosales JL, Lee KY. Primary microcephaly 3 (MCPH3): revisiting two critical mutations. Cell Cycle. 2011; 10(8): 1331-33. https://doi.org/10.4161/cc.10.8.15358
43. Barr AR, Kilmartin JV, Gergely F. CDK5RAP2 functions in centrosome to spindle pole attachment and DNA damage response. J Cell Biol. 2010 Apr; 189(1): 23-39. doi: 10.1083/jcb.200912163
44. Trimborn M, Richter R, Sternberg N, Gavvovidis I, Schindler D, Jackson AP, et al. The first missense alteration in the MCPH1 gene causes autosomal recessive microcephaly with an extremely mild cellular and clinical phenotype. Hum Mutat. 2005 Nov; 26(5): 496. doi: 10.1002/humu.9382
45. Ghani-Kakhki M, Robinson PN, Morlot S, Mitter D, Trimborn M, Albrecht B, et al. Two Missense Mutations in the Primary Autosomal Recessive Microcephaly Gene MCPH1 Disrupt the Function of the Highly Conserved N-Terminal BRCT Domain of Microcephalin. Mol Syndromol. 2012 Jun; 3(1): 6-13. doi: 10.1159/000338975
46. Farooq M, Baig S, Tommerup N, Kjaer KW. Craniosynostosis-microcephaly with chromosomal breakage and other abnormalities is caused by a truncating MCPH1 mutation and is allelic to premature chromosomal condensation syndrome and primary autosomal recessive microcephaly type 1. Am J Med Genet A. 2010 Feb; 152A(2): 495-97. doi: 10.1002/ajmg.a.33234
47. Wang JK, Li Y, Su B. A common SNP of MCPH1 is associated with cranial volume variation in Chinese population. Hum Mol Genet. 2008 May; 17(9): 1329-35. doi: 10.1093/hmg/ddn021
48. Sajid Hussain M, Marriam Bakhtiar S, Farooq M, Anjum I, Janzen E, Reza Toliat M, et al. Genetic heterogeneity in Pakistani microcephaly families. Clin Genet. 2013 May; 83(5): 446-51. doi: 10.1111/j.1399-0004.2012.01932.x
49. Trimborn M, Bell SM, Felix C, Rashid Y, Jafri H, Griffiths PD, et al. Mutations in microcephalin cause aberrant regulation of chromosome condensation. Am J Hum Genet. 2004 Aug; 75(2): 261-66. doi: 10.1086/422855
50. Girirajan S, Dennis MY, Baker C, Malig M, Coe BP, Campbell CD, et al. Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder. Am J Hum Genet. 2013 Feb; 92(2): 221-37. doi: 10.1016/j.ajhg.2012.12.016
51. Ozgen HM, van Daalen E, Bolton PF, Maloney VK, Huang S, Cresswell L, et al. Copy number changes of the microcephalin 1 gene (MCPH1) in patients with autism spectrum disorders. Clin Genet. 2009 Oct; 76(4): 348-56. doi: 10.1111/j.1399-0004.2009.01254.x
52. Jackson AP, Eastwood H, Bell SM, Adu J, Toomes C, Carr IM, et al. Identification of microcephalin, a protein implicated in determining the size of the human brain. Am J Hum Genet. 2002 Jul; 71(1): 136-42. doi: 10.1086/341283
53. Nicholas AK, Khurshid M, Desir J, Carvalho OP, Cox JJ, Thornton G, et al. WDR62 is associated with the spindle pole and is mutated in human microcephaly. Nat Genet. 2010 Nov; 42(11): 1010-14. doi: 10.1038/ng.682
54. Memon MM, Raza SI, Basit S, Kousar R, Ahmad W, Ansar M. A novel WDR62 mutation causes primary microcephaly in a akistani family. Mol Biol Rep. 2013 Jan; 40(1): 591-95. doi: 10.1007/s11033-012-2097-7
55. Bhat V, Girimaji SC, Mohan G, Arvinda HR, Singhmar P, Duvvari MR, et al. Mutations in WDR62, encoding a centrosomal and nuclear protein, in Indian primary microcephaly families with cortical malformations. Clin Genet. 2011 Dec; 80(6): 532-40. doi: 10.1111/j.1399-0004.2011.01686.x
56. Bacino CA, Arriola LA, Wiszniewska J, Bonnen PE. WDR62 missense mutation in a consanguineous family with primary microcephaly. Am J Med Genet A. 2012 Mar; 158A(3): 622-25. doi: 10.1002/ajmg.a.34417
57. Kousar R, Hassan MJ, Khan B, Basit S, Mahmood S, Mir A, et al. Mutations in WDR62 gene in Pakistani families with autosomal recessive primary microcephaly. BMC Neurol. 2011 Oct; 11: 119. doi: 10.1186/1471-2377-11-119
58. Murdock DR, Clark GD, Bainbridge MN, Newsham I, Wu YQ, Muzny DM, et al. Whole-exome sequencing identifies compound heterozygous mutations in WDR62 in siblings with recurrent polymicrogyria. Am J Med Genet A. 2011 Sep; 155A(9): 2071-77. doi: 10.1002/ajmg.a.34165
59. Yu TW, Mochida GH, Tischfield DJ, Sgaier SK, Flores-Sarnat L, Sergi CM, et al. Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nature Genetics. 2010; 42(11): 1015-20.
60. Bond J, Roberts E, Springell K, Lizarraga SB, Scott S, Higgins J, et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat Genet. 2005 Apr; 37(4): 353-55. doi: 10.1038/ng1539
61. Pagnamenta AT, Murray JE, Yoon G, Sadighi Akha E, Harrison V, Bicknell LS, et al. A novel nonsense CDK5RAP2 mutation in a Somali child with primary microcephaly and sensorineural hearing loss. Am J Med Genet A. 2012 Oct; 158A(10): 2577-82. doi: 10.1002/ajmg.a.35558
62. Issa L, Mueller K, Seufert K, Kraemer N, Rosenkotter H, Ninnemann O, et al. Clinical and cellular features in patients with primary autosomal recessive microcephaly and a novel CDK5RAP2 mutation. Orphanet J Rare Dis. 2013 Apr; 8: 59. doi: 10.1186/1750-1172-8-59
63. Tan CA, Topper S, Ward Melver C, Stein J, Reeder A, Arndt K, et al. The first case of CDK5RAP2-related primary microcephaly in a non-consanguineous patient identified by next generation sequencing. Brain Dev. 2014 Apr; 36(4): 351-55. doi: 10.1016/j.braindev.2013.05.001
64. Szczepanski S, Hussain MS, Sur I, Altmuller J, Thiele H, Abdullah U, et al. A novel homozygous splicing mutation of CASC5 causes primary microcephaly in a large Pakistani family. Hum Genet. 2016 Feb; 135(2): 157-70. doi: 10.1007/s00439-015-1619-5
65. Zarate YA, Kaylor JA, Bosanko K, Lau S, Vargas J, Gao H. First clinical report of an infant with microcephaly and CASC5 mutations. Am J Med Genet A. 2016 Aug; 170(8): 2215-18. doi: 10.1002/ajmg.a.37726
66. Saadi A, Verny F, Siquier-Pernet K, Bole-Feysot C, Nitschke P, Munnich A, et al. Refining the phenotype associated with CASC5 mutation. Neurogenetics. 2016 Jan; 17(1): 71-8. doi: 10.1007/s10048-015-0468-7
67. Nicholas AK, Swanson EA, Cox JJ, Karbani G, Malik S, Springell K, et al. The molecular landscape of ASPM mutations in primary microcephaly. J Med Genet. 2009 Apr; 46(4): 249-53. doi: 10.1136/jmg.2008.062380
68. Bond J, Scott S, Hampshire DJ, Springell K, Corry P, Abramowicz MJ, et al. Protein-truncating mutations in ASPM cause variable reduction in brain size. Am J Hum Genet. 2003 Nov; 73(5): 1170-77. doi: 10.1086/379085
69. Kousar R, Nawaz H, Khurshid M, Ali G, Khan SU, Mir H, et al. Mutation analysis of the ASPM gene in 18 Pakistani families with autosomal recessive primary microcephaly. J Child Neurol. 2010 Jun; 25(6): 715-20. doi: 10.1177/0883073809346850
70. Passemard S, Titomanlio L, Elmaleh M, Afenjar A, Alessandri JL, Andria G, et al. Expanding the clinical and neuroradiologic phenotype of primary microcephaly due to ASPM mutations. Neurology. 2009 Sep; 73(12): 962-69. doi: 10.1212/WNL.0b013e3181b8799a
71. Muhammad F, Mahmood Baig S, Hansen L, Sajid Hussain M, Anjum Inayat I, Aslam M, et al. Compound heterozygous ASPM mutations in Pakistani MCPH families. Am J Med Genet A. 2009 May; 149A(5): 926-30. doi: 10.1002/ajmg.a.32749
72. Halsall S, Nicholas AK, Thornton G, Martin H, Geoffrey Woods C. Critical consequences of finding three pathogenic mutations in an individual with recessive disease. J Med Genet. 2010 Nov; 47(11): 769-70. doi: 10.1136/jmg.2010.079277
73. Kumar A, Blanton SH, Babu M, Markandaya M, Girimaji SC. Genetic analysis of primary microcephaly in Indian families: novel ASPM mutations. Clin Genet. 2004 Oct; 66(4): 341-48. doi: 10.1111/j.1399-0004.2004.00304.x
74. Papari E, Bastami M, Farhadi A, Abedini SS, Hosseini M, Bahman I, et al. Investigation of primary microcephaly in Bushehr province of Iran: novel STIL and ASPM mutations. Clin Genet. 2013 May; 83(5): 488-90. doi: 10.1111/j.1399-0004.2012.01949.x
75. Gul A, Tariq M, Khan MN, Hassan MJ, Ali G, Ahmad W. Novel protein-truncating mutations in the ASPM gene in families with autosomal recessive primary microcephaly. J Neurogenet. 2007 Jul-Sep; 21(3): 153-63. doi: 10.1080/01677060701508594
76. Shen J, Eyaid W, Mochida GH, Al-Moayyad F, Bodell A, Woods CG, et al. ASPM mutations identified in patients with primary microcephaly and seizures. J Med Genet. 2005 Sep; 42(9): 725-29. doi: 10.1136/jmg.2004.027706
77. Al-Gazali L, Ali BR. Mutations of a country: a mutation review of single gene disorders in the United Arab Emirates (UAE). Hum Mutat. 2010 May; 31(5): 505-20. doi: 10.1002/humu.21232
78. Bond J, Roberts E, Mochida GH, Hampshire DJ, Scott S, Askham JM, et al. ASPM is a major determinant of cerebral cortical size. Nat Genet. 2002 Oct; 32(2): 316-20. doi: 10.1038/ng995
79. Ariani F, Mari F, Amitrano S, Di Marco C, Artuso R, Scala E, et al. Exome sequencing overrides formal genetics: ASPM mutations in a case study of apparent X-linked microcephalic intellectual deficit. Clin Genet. 2013 Mar; 83(3): 288-90. doi: 10.1111/j.1399-0004.2012.01901.x
80. Desir J, Cassart M, David P, Van Bogaert P, Abramowicz M. Primary microcephaly with ASPM mutation shows simplified cortical gyration with antero-posterior gradient pre- and post-natally. Am J Med Genet A. 2008 Jun; 146A(11): 1439-43. doi: 10.1002/ajmg.a.32312
81. Gul A, Hassan MJ, Mahmood S, Chen W, Rahmani S, Naseer MI, et al. Genetic studies of autosomal recessive primary microcephaly in 33 Pakistani families: Novel sequence variants in ASPM gene. Neurogenetics. 2006 May; 7(2): 105-10. doi: 10.1007/s10048-006-0042-4
82. Pichon B, Vankerckhove S, Bourrouillou G, Duprez L, Abramowicz MJ. A translocation breakpoint disrupts the ASPM gene in a patient with primary microcephaly. Eur J Hum Genet. 2004 May; 12(5): 419-21. doi: 10.1038/sj.ejhg.5201169
83. Al-Dosari MS, Shaheen R, Colak D, Alkuraya FS. Novel CENPJ mutation causes Seckel syndrome. J Med Genet. 2010 Jun; 47(6): 411-14. doi: 10.1136/jmg.2009.076646
84. Gul A, Hassan MJ, Hussain S, Raza SI, Chishti MS, Ahmad W. A novel deletion mutation in CENPJ gene in a Pakistani family with autosomal recessive primary microcephaly. J Hum Genet. 2006; 51(9): 760-4. doi: 10.1007/s10038-006-0017-1
85. Kakar N, Ahmad J, Morris-Rosendahl DJ, Altmuller J, Friedrich K, Barbi G, et al. STIL mutation causes autosomal recessive microcephalic lobar holoprosencephaly. Hum Genet. 2015 Jan; 134(1): 45-51. doi: 10.1007/s00439-014-1487-4
86. Farooq M, Fatima A, Mang Y, Hansen L, Kjaer KW, Baig SM, et al. A novel splice site mutation in CEP135 is associated with primary microcephaly in a Pakistani family. J Hum Genet. 2016 Mar; 61(3): 271-73. doi: 10.1038/jhg.2015.138
87. Kalay E, Yigit G, Aslan Y, Brown KE, Pohl E, Bicknell LS, et al. CEP152 is a genome maintenance protein disrupted in Seckel syndrome. Nat Genet. 2011 Jan; 43(1): 23-26. doi: 10.1038/ng.725
88. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012; 485(7397): 237-41.
89. Sato R, Takanashi J, Tsuyusaki Y, Kato M, Saitsu H, Matsumoto N, et al. Association Between Invisible Basal Ganglia and ZNF335 Mutations: A Case Report. Pediatrics. 2016 Sep; 138(3). pii: e20160897. doi: 10.1542/peds.2016-0897
90. Kumar A, Purohit R. Computational screening and molecular dynamics simulation of disease associated nsSNPs in CENP-E. Mutat Res. 2012 Oct-Nov; 738-39: 28-37. doi: 10.1016/j.mrfmmm.2012.08.005
91. Guemez-Gamboa A, Nguyen LN, Yang H, Zaki MS, Kara M, Ben-Omran T, et al. Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat Genet. 2015 Jul; 47(7): 809-13. doi: 10.1038/ng.3311
92. Li H, Bielas SL, Zaki MS, Ismail S, Farfara D, Um K, et al. Biallelic Mutations in Citron Kinase Link Mitotic Cytokinesis to Human Primary Microcephaly. Am J Hum Genet. 2016 Aug; 99(2): 501-10. doi: 10.1016/j.ajhg.2016.07.004
93. Harding BN, Moccia A, Drunat S, Soukarieh O, Tubeuf H, Chitty LS, et al. Mutations in Citron Kinase Cause Recessive Microlissencephaly with Multinucleated Neurons. Am J Hum Genet. 2016 Aug; 99(2): 511-20. doi: 10.1016/j.ajhg.2016.07.003
94. Shaheen R, Hashem A, Abdel-Salam GM, Al-Fadhli F, Ewida N, Alkuraya FS. Mutations in CIT, encoding citron rho-interacting serine/threonine kinase, cause severe primary microcephaly in humans. Hum Genet. 2016 Oct; 135(10): 1191-97. doi: 10.1007/s00439-016-1722-2
95. Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J, et al. De novo gene disruptions in children on the autistic spectrum. Neuron. 2012 Apr; 74(2): 285-99. doi: 10.1016/j.neuron.2012.04.009
96. Zhang G, Lischetti T, Nilsson J. A minimal number of MELT repeats supports all the functions of KNL1 in chromosome segregation. J Cell Sci. 2014 Feb; 127(Pt 4): 871-84. doi: 10.1242/jcs.139725
97. Morris-Rosendahl DJ, Kaindl AM. What next-generation sequencing (NGS) technology has enabled us to learn about primary autosomal recessive microcephaly (MCPH). Mol Cell Probes. 2015 Oct; 29(5): 271-81. doi: 10.1016/j.mcp.2015.05.015
98. Abdel-Hamid MS, Ismail MF, Darwish HA, Effat LK, Zaki MS, Abdel-Salam GM. Molecular and phenotypic spectrum of ASPM-related primary microcephaly: Identification of eight novel mutations. Am J Med Genet A. 2016 Aug; 170(8): 2133-40. doi: 10.1002/ajmg.a.37724
99. Li R, Sun L, Fang A, Li P, Wu Q, Wang X. Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease. Protein Cell. 2017 Nov; 8(11): 823-33. doi: 10.1007/s13238-017-0479-2
100. Hagemann C, Anacker J, Gerngras S, Kuhnel S, Said HM, Patel R, et al. Expression analysis of the autosomal recessive primary microcephaly genes MCPH1 (microcephalin) and MCPH5 (ASPM, abnormal spindle-like, microcephaly associated) in human malignant gliomas. Oncol Rep. 2008 Aug; 20(2): 301-8.
101. Khan MA, Windpassinger C, Ali MZ, Zubair M, Gul H, Abbas S, et al. Molecular genetic analysis of consanguineous families with primary microcephaly identified pathogenic variants in the ASPM gene. J Genet. 2017 Jun; 96(2): 383-87.
102. Cox J, Jackson AP, Bond J, Woods CG. What primary microcephaly can tell us about brain growth. Trends Mol Med. 2006 Aug; 12(8): 358-66. 10.1016/j.molmed.2006.06.006
103. Thornton GK, Woods CG. Primary microcephaly: do all roads lead to Rome? Trends Genet. 2009 Nov; 25(11): 501-10. doi: 10.1016/j.tig.2009.09.011
104. Kumar A, Rajendran V, Sethumadhavan R, Purohit R. In silico prediction of a disease-associated STIL mutant and its affect on the recruitment of centromere protein J (CENPJ). FEBS Open Bio. 2012 Sep; 2: 285-93. doi: 10.1016/j.fob.2012.09.003
105. Kaindl AM, Passemard S, Kumar P, Kraemer N, Issa L, Zwirner A, et al. Many roads lead to primary autosomal recessive microcephaly. Prog Neurobiol. 2010 Mar; 90(3): 363-83. doi: 10.1016/j.pneurobio.2009.11.002
106. Ohta T, Essner R, Ryu JH, Palazzo RE, Uetake Y, Kuriyama R. Characterization of Cep135, a novel coiled-coil centrosomal protein involved in microtubule organization in mammalian cells. J Cell Biol. 2002 Jan; 156(1): 87-99. doi: 10.1083/jcb.200108088
107. Uetake Y, Terada Y, Matuliene J, Kuriyama R. Interaction of Cep135 with a p50 dynactin subunit in mammalian centrosomes. Cell Motil Cytoskeleton. 2004 May; 58(1): 53-66. doi: 10.1002/cm.10175
108. Kim K, Lee S, Chang J, Rhee K. A novel function of CEP135 as a platform protein of C-NAP1 for its centriolar localization. Exp Cell Res. 2008 Dec; 314(20): 3692-700. doi: 10.1016/j.yexcr.2008.09.016
109. Sha YW, Xu X, Mei LB, Li P, Su ZY, He XQ, et al. A homozygous CEP135 mutation is associated with multiple morphological abnormalities of the sperm flagella (MMAF). Gene. 2017 Oct; 633: 48-53. doi: 10.1016/j.gene.2017.08.033
110. Singh P, Ramdas Nair A, Cabernard C. The centriolar protein Bld10/Cep135 is required to establish centrosome asymmetry in Drosophila neuroblasts. Curr Biol. 2014 Jul; 24(13): 1548-55. doi: 10.1016/j.cub.2014.05.050
111. Kraatz S, Guichard P, Obbineni JM, Olieric N, Hatzopoulos GN, Hilbert M, et al. The Human Centriolar Protein CEP135 Contains a Two-Stranded Coiled-Coil Domain Critical for Microtubule Binding. Structure. 2016 Aug; 24(8): 1358-71. doi: 10.1016/j.str.2016.06.011
112. Mottier-Pavie V, Megraw TL. Drosophila bld10 is a centriolar protein that regulates centriole, basal body, and motile cilium assembly. Mol Biol Cell. 2009 May; 20(10): 2605-14. doi: 10.1091/mbc.E08-11-1115
113. Hatch EM, Kulukian A, Holland AJ, Cleveland DW, Stearns T. Cep152 interacts with Plk4 and is required for centriole duplication. J Cell Biol. 2010 Nov; 191(4): 721-29. doi: 10.1083/jcb.201006049
114. Malumbres M, Sotillo R, Santamaria D, Galan J, Cerezo A, Ortega S, et al. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell. 2004 Aug; 118(4): 493-504. doi: 10.1016/j.cell.2004.08.002
115. Abrieu A, Kahana JA, Wood KW, Cleveland DW. CENP-E as an essential component of the mitotic checkpoint in vitro. Cell. 2000 Sep; 102(6): 817-26. doi: 10.1016/s0092-8674(00)00070-2
116. Yao X, Abrieu A, Zheng Y, Sullivan KF, Cleveland DW. CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nat Cell Biol. 2000 Aug; 2(8): 484-91. doi: 10.1038/35019518
117. Putkey FR, Cramer T, Morphew MK, Silk AD, Johnson RS, McIntosh JR, et al. Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev Cell. 2002 Sep; 3(3): 351-65.
118. Kitagawa D, Vakonakis I, Olieric N, Hilbert M, Keller D, Olieric V, et al. Structural basis of the 9-fold symmetry of centrioles. Cell. 2011 Feb; 144(3): 364-75. doi: 10.1016/j.cell.2011.01.008
119. Rodrigues-Martins A, Bettencourt-Dias M, Riparbelli M, Ferreira C, Ferreira I, Callaini G, et al. DSAS-6 organizes a tube-like centriole precursor, and its absence suggests modularity in centriole assembly. Curr Biol. 2007 Sep; 17(17): 1465-72. doi: 10.1016/j.cub.2007.07.034
120. van Breugel M, Hirono M, Andreeva A, Yanagisawa HA, Yamaguchi S, Nakazawa Y, et al. Structures of SAS-6 suggest its organization in centrioles. Science. 2011 Mar; 331(6021): 1196-99. doi: 10.1126/science.1199325
121. Wollnik B. A common mechanism for microcephaly. Nat Genet. 2010 Nov; 42(11): 923-24. doi: 10.1038/ng1110-923
122. Nakazawa Y, Hiraki M, Kamiya R, Hirono M. SAS-6 is a cartwheel protein that establishes the 9-fold symmetry of the centriole. Curr Biol. 2007 Dec; 17(24): 2169-74. doi: 10.1016/j.cub.2007.11.046
123. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002 Jun; 12(6): 996-1006. doi: 10.1101/gr.229102
124. Reiling JH, Clish CB, Carette JE, Varadarajan M, Brummelkamp TR, Sabatini DM. A haploid genetic screen identifies the major facilitator domain containing 2A (MFSD2A) transporter as a key mediator in the response to tunicamycin. Proc Natl Acad Sci U S A. 2011 Jul; 108(29): 11756-65. doi: 10.1073/pnas.1018098108
125. Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature. 2014 May; 509(7501): 503-6. doi: 10.1038/nature13241
126. Asencio C, Davidson IF, Santarella-Mellwig R, Ly-Hartig TB, Mall M, Wallenfang MR, et al. Coordination of kinase and phosphatase activities by Lem4 enables nuclear envelope reassembly during mitosis. Cell. 2012 Jul; 150(1): 122-35. doi: 10.1016/j.cell.2012.04.043
127. Di Cunto F, Imarisio S, Hirsch E, Broccoli V, Bulfone A, Migheli A, et al. Defective neurogenesis in citron kinase knockout mice by altered cytokinesis and massive apoptosis. Neuron. 2000 Oct; 28(1): 115-27.
128. Ohkura H, Torok T, Tick G, Hoheisel J, Kiss I, Glover DM. Mutation of a gene for a Drosophila kinesin-like protein, Klp38B, leads to failure of cytokinesis. J Cell Sci. 1997 Apr; 110 (Pt 8): 945-54.
129. Fujikura K, Setsu T, Tanigaki K, Abe T, Kiyonari H, Terashima T, et al. Kif14 mutation causes severe brain malformation and hypomyelination. PLoS One. 2013; 8(1): e53490. doi: 10.1371/journal.pone.0053490
Send email to the article author

XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sharifinya A, Oladnabi M. A review on the genetics of autosomal recessive primary microcephaly. J Gorgan Univ Med Sci 2019; 21 (4) :1-13
URL: http://goums.ac.ir/journal/article-1-3562-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 4 (12-2019) Back to browse issues page
مجله دانشگاه علوم پزشکی گرگان Journal of Gorgan University of Medical Sciences
Persian site map - English site map - Created in 0.05 seconds with 36 queries by YEKTAWEB 4645