[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Editorial Board::
Executive Members::
Instruction to Authors::
Peer Review::
Articles Archive::
Indexing Databases::
Contact Us::
Site Facilities::
::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Volume 20, Issue 2 (7-2018) ::
J Gorgan Univ Med Sci 2018, 20(2): 109-115 Back to browse issues page
Antibiotic resistance of Salmonella enterica producing Extended-spectrum B-lactamases (ESBLs) type CMY-2, in poultry
Maryam Naderi Mozajin1 , Pejvak Khaki * 2, Fatemeh Noorbakhsh3
1- M.Sc in Cellular and Molecular Biology - Microbiology, Department of Microbiology, Varamin-Pishva Branch, Islamic Azad Univercity, Varamin-Pishva, Iran
2- Associate Professor, Department of Microbiology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. p.khaki@rvsri.ac.ir , p.khaki@rvsri.ac.ir
3- Assistant Professor, Department of Microbiology, Varamin-Pishva Branch, Islamic Azad Univercity, Varamin-Pishva, Iran
Abstract:   (11743 Views)
Background and Objective: Salmonella is one of the most important zoonotic pathogens responsible for food-borne infections all over the world. Poultry products are widely acknowledged to be a significant reservoir for Salmonella. This study was done to evaluate the antibiotic resistant of Salmonella enterica producer of beta lactamase spectrum in poultry.
Methods: In this descriptive – laboratort study 70 Salmonella enterica serotypes were collected from poultry. All Salmonella isolates were tested to antimicrobial susceptibility testing by the Kirby-Bauer disk diffusion according to Clinical Laboratory Standards Institute (CLSI). Twenty-nine antibiotics were used in this study. Klebsiella pneumoniae; ATCC 700603 was used as quality control strains. The isolates were determined to be ESBL-producing Salmonella by the conventional double-disk synergy and genotypic method.
Results: Among 70 salmonella isolates, the most prevalent serotypes were S.typhimurium and S.enteritidis. All serotypes were susceptible to gentamicin, ciprofloxacin, oflaxacin, imipenem, enrofloxacin. The common resistance was observed to cephalexin (96%), cefazolin (96%) and cephalotin (65%). Among the 70 Salmonella isolates studied, multi-drug resistance was observed in 59 (84%) isolates. Forty-seven (67%) isolates were found to be ESBL-producing isolates. PCR assay of all isolates showed that 17 isolates (33.3%) carried bala CMY2 gene.
Conclusion: This study showed that antibiotic resistance to Salmonella enterica serotypes is due to beta lactamase enzyme in this strain is considerably increased in poultry.
Keywords: Salmonella enterica, ESBL, Multi-drug resistant, Bala CMY2 gene
Full-Text [PDF 325 kb] [English Abstract]   (15865 Downloads) |   |   Abstract (HTML)  (375 Views)  
Type of Study: Original Articles | Subject: Microbiology
* Corresponding Author Address: Associate Professor, Department of Microbiology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. p.khaki@rvsri.ac.ir
References
1. Nair S, Lin TK, Pang T, Altwegg M. Characterization of Salmonella serovars by PCR-single-strand conformation polymorphism analysis. J Clin Microbiol. 2002 Jul;40(7):2346-51.
2. Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. Salmonella nomenclature. J Clin Microbiol. 2000 Jul; 38(7): 2465-67.
3. Moat AG, Foster JW, Spector MP. Microbial Physiology. 4th ed. New York: John Wiley & Sons. 2002; p: 66.
4. Bonnet R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother. 2004 Jan; 48(1): 1-14.
5. Rabsch W, Simon S, Humphrey T. Public health aspects of Salmonella infections. In: Barrow P. Salmonella in Domestic Animals. Chap 18. 2nd ed. Wallingford: CAB International. 2013; pp: 351-76.
6. Soltan Dallal MM, Rastegar Lari A, Sharifi Yazdi MK. [Pattern of serotyping and antibiotic resistance of Salmonella in children with diarrhea]. J Gorgan Univ Med Sci. 2014; 16(1): 100-105. [Article in Persian]
7. Bogaard AE, London N, Driessen C, Stobberingh EE. Antibiotic resistance of fecal Escherichia coli in poultry, poultry farmers and poultry Slaughterers. J Antimicrob Chemother. 2001 Jun; 47(6): 763-71. https://doi.org/10.1093/jac/47.6.763
8. Mansouri S, Shareifi S. Antimicrobial resistance pattern of Escherichiacoli causing UTLs: and that of human fecal flora in the southeast of Iran. Microbial Drug Resistance. 2004 Jul; 8(2): 123-28. https://doi.org/10.1089/107662902760190662
9. Lay K, Chansong N, Chuanchuen R. Plasmid profiles of multidrug-resistant Escherichia coli from clinically healthy swine. The Thai Journal of Veterinary Medicine. 2012; 42(2): 229-33.
10. Kinzelman J, McLellan SL, Amick A, Preedit J, Scople CO, Olapade O, et al. Identification of human enteric pathogens in gull feces at SouthwestLake Michigan bathing beaches. Can J Microbiol. 2008; 54(12): 1006-15. https://doi.org/10.1139/W08-096
11. Mesa RJ, Blanc V, Blanch AR, Cortés P, González JJ, Lavilla S, et al. Extended-spectrum beta-lactamase-producing Enterobacteriaceae in different environments (humans, food, animal farms and sewage). J Antimicrob Chemother. 2006 Jul; 58(1): 211-5. doi:10.1093/jac/dkl211
12. Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type beta-lactamases. Antimicrob Agents Chemother. 2002 Jan; 46(1): 1-11.
13. Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection. 1983 Nov-Dec;11(6):315-7.
14. Florijn A, Nijssen S, Schmitz FJ, Verhoef J, Fluit AC. Comparison of E test and double disk diffusion test for detection of extended spectrum beta-lactamases. Eur J Clin Microbiol Infect Dis. 2002 Mar; 21(3): 241-43.
15. Jacoby GA, Medeiros AA. More extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1991 Sep; 35(9): 1697-704.
16. Bairami Azar H, Zare P, Ghorbani Choboghlo H, Panahi T, Saeedian A, Afrazeh Y. Isolation of Salmonella Spp from apparently Healthy Ostriches in East Azerbaijan Province. The 13th Iranian and 2nd International Congress of Microbiology. Ardabil University of Medical Sciences, Ardabil, Iran. 2012 July 14-16. p: 488. [Abstract]
17. Carramiñana JJ, Rota C, Agustín I, Herrera A. High prevalence of multiple resistance to antibiotics in Salmonella serovars isolated from a poultry slaughterhouse in Spain. Vet Microbiol. 2004 Nov; 104(1-2): 133-39. doi:10.1016/j.vetmic.2004.08.010
18. Maskey AP, Day JN, Phung QT, Thwaites GE, Campbell JI, Zimmerman M, et al. Salmonella enterica serovar Paratyphi A and S. enterica serovar Typhi cause indistinguishable clinical syndromes in Kathmandu, Nepal. Clin Infect Dis. 2006 May; 42(9): 1247-53. doi:10.1086/503033
19. Ammar A, Alloui N, Bennoune O, Kassah-Laouar A. Survey of Salmonella serovars in broilers and laying breeding reproducers in East of Algeria. J Infect Dev Ctries. 2010 Mar; 4(2): 103-6.
20. Elumalai S, Muthu G, Selvam RE, Ramesh S. Detection of TEM-, SHV- and CTX-M-type -lactamase production among clinical isolates of Salmonella species. J Med Microbiol. 2014 Jul; 63(Pt 7): 962-67. doi:10.1099/jmm.0.068486-0
21. Rodríguez-Baño J, Navarro MD, Romero L, Martínez-Martínez L, Muniain MA, Perea EJ, et al. Epidemiology and clinical features of infections caused by extended-spectrum beta-lactamase-producing Escherichia coli in nonhospitalized patients. J Clin Microbiol. 2004 Mar; 42(3): 1089-94.
22. Graziani C, Busani L, Dionisi AM, Lucarelli C, Owczarek S, Ricci A, et al. Antimicrobial resistance in Salmonella enterica serovar Typhimurium from human and animal sources in Italy. Vet Microbiol. 2008 Apr; 128(3-4): 414-18. doi:10.1016/j.vetmic.2007.10.017
23. De Gheldre Y, Avesani V, Berhin C, Delmée M, Glupczynski Y. Evaluation of Oxoid combination discs for detection of extended-spectrum beta-lactamases. J Antimicrob Chemother. 2003 Oct; 52(4): 591-97. [DOI]
24. Lee KE, Lim SI, Choi HW, Lim SK, Song JY, An DJ. Plasmid-mediated AmpC -lactamase (CMY-2) gene in Salmonellatyphimurium isolated from diarrheic pigs in South Korea. BMC Res Notes. 2014; 7: 329. doi:10.1186/1756-0500-7-329
25. Li R, Lai J, Wang Y, Liu S, Li Y, Liu K, Shen J, Wu C. Prevalence and characterization of Salmonella species isolated from pigs, ducks and chickens in Sichuan Province, China. Int J Food Microbiol. 2013 Apr; 163(1): 14-18. doi:10.1016/j.ijfoodmicro.2013.01.020
26. Momtaz H, Rahimi E, Moshkelani S. Molecular detection of antimicrobial resistance genes in E. coli isolated from slaughtered commercial chickens in Iran. Vet Med. 2012; 57(4): 193-97.
27. Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008 Mar; 8(3): 159-66. doi:10.1016/S1473-3099(08)70041-0
Send email to the article author


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Naderi Mozajin M, Khaki P, Noorbakhsh F. Antibiotic resistance of Salmonella enterica producing Extended-spectrum B-lactamases (ESBLs) type CMY-2, in poultry. J Gorgan Univ Med Sci 2018; 20 (2) :109-115
URL: http://goums.ac.ir/journal/article-1-3311-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 20, Issue 2 (7-2018) Back to browse issues page
مجله دانشگاه علوم پزشکی گرگان Journal of Gorgan University of Medical Sciences
Persian site map - English site map - Created in 0.04 seconds with 36 queries by YEKTAWEB 4660
Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)