[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Editorial Board::
Executive Members::
Articles Archive::
Instruction to Authors::
Peer-Review::
Contact Us::
Site Facilities::
::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Volume 19, Issue 2 (7-2017) ::
J Gorgan Univ Med Sci 2017, 19(2): 1-10 Back to browse issues page
Role of viruses in the destruction of the central nervous system and its impact on the multiple sclerosis
N Hashemi1 , M Saeidi * 2
1- Ph.D Candidate in Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2- Assistant Professor, Stem Cells Research Center, Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran , saeedi.m50@gmail.com
Abstract:   (9405 Views)

Multiple sclerosis (MS) is a chronic inflammatory immune-mediated disease of the central nervous system. Despite extensive investigations, many aspects of etiology and pathophysiology remain unclear. In multiple sclerosis patients, immune system reacts against autologous proteins in the myelin membrane. Most evidences support the hypothesis that both genetic and environmental factors contribute to disease development. But after the failure of genetic findings to explain the reason for the unequal incidence of MS in identical twins, investigators focused further on environmental factors such as vitamin D deficiency, smoking, living in different latitudes and perhaps the most importantly the role of viruses in people whom are genetically susceptible to MS. There is increasing evidence that viruses may play important role in MS pathogenesis following environmental triggers. Recently, studies focused on the role of herpes virus family, especially Epstein-Barr virus, human herpes virus 6 (HHV-6) and Varicella Zoster virus, as the virus is prevalent in society. This review mainly focused on the identification of important viruses with key role in MS the mechanism behind pathogenesis and describes the animal models of MS. The results of researches are shown strong evidence of the virus or antibodies to viral components in active plaques in MS affected patients, but still cannot be stated with certainty that one or more specific viruses are simultaneously trigger the disease. Further studies are required to prove the pathogenesis of viruses in MS.

Keywords: Multiple Sclerosis, Environmental factors, Virus, Myelin
Full-Text [PDF 347 kb] [English Abstract]   (14773 Downloads) |   |   Abstract (HTML)  (1078 Views)  
Type of Study: Review Article | Subject: Neurology
References
1. Libbey JE, Cusick MF, Fujinami RS. Role of pathogens in multiple sclerosis. Int Rev Immunol. 2014 Jul-Aug; 33(4): 266-83. doi:10.3109/08830185.2013.823422
2. Pender MP, Burrows SR. Epstein-Barr virus and multiple sclerosis: potential opportunities for immunotherapy. Clin Transl Immunology. 2014 Oct; 3(10): e27. doi:10.1038/cti.2014.25
3. Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol. 2007 Apr; 61(4): 288-99.
4. Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015 Sep; 15(9): 545-58. doi:10.1038/nri3871
5. Wu GF, Alvarez E. The immunopathophysiology of multiple sclerosis. Neurol Clin. 2011 May; 29(2): 257-78. doi:10.1016/j.ncl.2010.12.009
6. Hashemi N, Yazdani Y. [Designing, Optimization and Construction of Myelin Basic Protein Coding Sequence Binding to the Immunogenic Subunit of Cholera Toxin]. Medical Laboratory Journal. 2014; 8(3): 8-14. [Article in Persian]
7. Frohman EM, Racke MK, Raine CS. Multiple sclerosis-the plaque and its pathogenesis. N Engl J Med. 2006 Mar; 354(9): 942-55. doi:10.1056/NEJMra052130
8. Saeidi M, Masoud A, Shakiba Y, Hadjati J, Mohyeddin Bonab M, Nicknam MH, et al. Immunomodulatory effects of human umbilical cord Wharton's jelly-derived mesenchymal stem cells on differentiation, maturation and endocytosis of monocyte-derived dendritic cells. Iran J Allergy Asthma Immunol. 2013 Mar; 12(1): 37-49. doi:012.01/ijaai.3749
9. Fragoso YD. Modifiable environmental factors in multiple sclerosis. Arq Neuro-Psiquiatr. 2014; 72(11): 889-94. http://dx.doi.org/10.1590/0004-282X20140159
10. Wakeland EK, Liu K, Graham RR, Behrens TW. Delineating the genetic basis of systemic lupus erythematosus. Immunity. 2001 Sep; 15(3): 397-408.
11. Gale CR, Martyn CN. Migrant studies in multiple sclerosis. Prog Neurobiol. 1995 Nov-Dec; 47(4-5): 425-48.
12. Baranzini SE, Mudge J, van Velkinburgh JC, Khankhanian P, Khrebtukova I, Miller NA, et al. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature. 2010 Apr; 464(7293): 1351-6. doi:10.1038/nature08990
13. Kakalacheva K, Lünemann JD. Environmental triggers of multiple sclerosis. FEBS Lett. 2011 Dec; 585(23): 3724-9. doi:10.1016/j.febslet.2011.04.006
14. Simpson S Jr, Blizzard L, Otahal P, Van der Mei I, Taylor B. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J Neurol Neurosurg Psychiatry. 2011 Oct; 82(10): 1132-41. doi:10.1136/jnnp.2011.240432
15. Jeffery LE, Burke F, Mura M, Zheng Y, Qureshi OS, Hewison M, et al. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J Immunol. 2009 Nov; 183(9): 5458-67. doi:10.4049/jimmunol.0803217
16. Yadav SK, Mindur JE, Ito K, Dhib-Jalbut S. Advances in the immunopathogenesis of multiple sclerosis. Curr Opin Neurol. 2015 Jun; 28(3): 206-19. doi:10.1097/WCO.0000000000000205
17. Wingerchuk DM. Smoking: effects on multiple sclerosis susceptibility and disease progression. Ther Adv Neurol Disord. 2012 Jan; 5(1): 13-22. doi:10.1177/1756285611425694
18. Correale J, Farez M. Effects of Smoke Exposure on the Course of Multiple Sclerosis I. Role of Indoleamine 2, 3-Dioxygenase (IDO) Activity (P04. 135). Neurology. 2013 Feb; 80(7): P04.135.
19. Gao Z, Nissen JC, Ji K, Tsirka SE. The experimental autoimmune encephalomyelitis disease course is modulated by nicotine and other cigarette smoke components. PLoS One. 2014 Sep; 9(9): e107979. doi:10.1371/journal.pone.0107979
20. Pawate S, Sriram S. The role of infections in the pathogenesis and course of multiple sclerosis. Ann Indian Acad Neurol. 2010 Apr-Jun; 13(2): 80-86.
21. Krone B, Grange JM. Multiple sclerosis: are protective immune mechanisms compromised by a complex infectious background? Autoimmune diseases. 2010; 2011: Article ID 708750. http://dx.doi.org/10.4061/2011/708750
22. Oskari Virtanen J, Jacobson S. Viruses and multiple sclerosis. CNS Neurol Disord Drug Targets. 2012 Aug; 11(5): 528–44.
23. Kakalacheva K, Münz C, Lünemann JD. Viral triggers of multiple sclerosis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2011; 1812(2): 132-40. https://doi.org/10.1016/j.bbadis.2010.06.012
24. Steelman AJ. Infection as an environmental trigger of multiple sclerosis disease exacerbation. Front Immunol. 2015; 6:520. doi:10.3389/fimmu.2015.00520
25. Cusick MF, Libbey JE, Fujinami RS. Multiple sclerosis: autoimmunity and viruses. Curr Opin Rheumatol. 2013 Jul; 25(4): 496-501. doi:10.1097/BOR.0b013e328362004d
26. Chastain EM, Miller SD. Molecular mimicry as an inducing trigger for CNS autoimmune demyelinating disease. Immunol Rev. 2012 Jan; 245(1): 227-38. doi:10.1111/j.1600-065X.2011.01076.x
27. Fujinami RS, Oldstone MB. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science. 1985 Nov; 230(4729): 1043-5.
28. Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol. 2002 Feb; 2(2): 85-95.
29. Fujinami RS, von Herrath MG, Christen U, Whitton JL. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev. 2006 Jan; 19(1): 80-94. doi:10.1128/CMR.19.1.80-94.2006
30. Thorley-Lawson DA. Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol. 2001 Oct; 1(1): 75-82.
31. Ascherio A, Munger KL. Epstein-barr virus infection and multiple sclerosis: a review. J Neuroimmune Pharmacol. 2010 Sep; 5(3): 271-7. doi:10.1007/s11481-010-9201-3
32. Chapenko S, Millers A, Nora Z, Logina I, Kukaine R, Murovska M. Correlation between HHV-6 reactivation and multiple sclerosis disease activity. J Med Virol. 2003 Jan; 69(1): 111-7.
33. Khaki M, Ghazavi A, Ghasami K, Rafei M, Payani M, Mosayebi G. [Anti-human herpes virus-6 antibodies titer in patients with multiple sclerosis in Markazy Province]. Arak Medical University Journal. 2009; 12(2): 45-50. [Article in Persian]
34. Atefi A, Shahhosseiny M, Bidoki K, Mansouri R, Binesh F, Atefi A, et al. [Investigating the Relative Frequency of Infection with Herpes Simplex Virus Types 1 and 2 in the Serum of Patients with Multiple Sclerosis via Using Loop-mediated Isothermal Amplification (LAMP)]. Journal of Shahid Sadoughi University of Medical Sciences (JSSU). 2014; 21(6): 823-30. [Article in Persian]
35. Baringer JR. Herpes simplex infections of the nervous system. Neurol Clin. 2008 Aug; 26(3): 657-74. doi:10.1016/j.ncl.2008.03.005
36. Leibovitch EC, Jacobson S. Evidence linking HHV-6 with multiple sclerosis: an update. Curr Opin Virol. 2014 Dec; 9: 127-33. doi:10.1016/j.coviro.2014.09.016
37. Mofidi M, Saeedi M, Behnampoor N. [Sero-epidemiologic investigation of Herpes Simplex virus type II in Gorgan, 2005]. Medical Laboratory Journal. 2007; 1(2): 14-19. [Article in Persian]
38. Hedayat Mofidi M, Moradi A, Saeedi M, Behnampoor N, Arab Yara Mohammadi J. [Sero-epidemiological Study of Herpes simplex virus type 1 infections in outpatient population referred to clinical laboratories in Gorgan, IRAN 2006]. Medical Laboratory Journal. 2008; 2(1): 51-56. [Article in Persian]
39. Gilden DH, Vafai A, Shtram Y, Becker Y, Devlin M, Wellish M. Varicella-zoster virus DNA in human sensory ganglia. Nature. 1983 Dec; 306(5942): 478-80.
40. Sotelo J, Martínez-Palomo A, Ordoñez G, Pineda B. Varicella-zoster virus in cerebrospinal fluid at relapses of multiple sclerosis. Ann Neurol. 2008 Mar; 63(3): 303-11. doi:10.1002/ana.21316
41. Sotelo J, Ordoñez G, Pineda B, Flores J. The participation of varicella zoster virus in relapses of multiple sclerosis. Clin Neurol Neurosurg. 2014 Apr; 119: 44-8. doi:10.1016/j.clineuro.2013.12.020
42. Kang JH, Sheu JJ, Kao S, Lin HC. Increased risk of multiple sclerosis following herpes zoster: a nationwide, population-based study. J Infect Dis. 2011 Jul; 204(2): 188-92. doi:10.1093/infdis/jir239
43. Antony JM, Ellestad KK, Hammond R, Imaizumi K, Mallet F, Warren KG, et al. The human endogenous retrovirus envelope glycoprotein, syncytin-1, regulates neuroinflammation and its receptor expression in multiple sclerosis: a role for endoplasmic reticulum chaperones in astrocytes. J Immunol. 2007 Jul; 179(2): 1210-24.
44. Tucker WG, Andrew Paskauskas R. The MSMV hypothesis: measles virus and multiple sclerosis, etiology and treatment. Med Hypotheses. 2008 Nov; 71(5): 682-9. doi:10.1016/j.mehy.2008.06.029
45. Brettschneider J, Tumani H, Kiechle U, Muche R, Richards G, Lehmensiek V, et al. IgG antibodies against measles, rubella, and varicella zoster virus predict conversion to multiple sclerosis in clinically isolated syndrome. PLoS One. 2009 Nov; 4(11): e7638. doi:10.1371/journal.pone.0007638
46. Komijani M, Bouzari M, Etemadifar M, Zarkesh-Esfahani H, Shaykh-Baygloo N, Ghazimorad A, et al. Torque teno mini virus infection and multiple sclerosis. Int J Neurosci. 2011 Aug; 121(8): 437-41. doi:10.3109/00207454.2011.569039
47. Mancuso R, Saresella M, Hernis A, Agostini S, Piancone F, Caputo D, et al. Torque teno virus (TTV) in multiple sclerosis patients with different patterns of disease. J Med Virol. 2013 Dec; 85(12): 2176-83. doi:10.1002/jmv.23707
48. Borkosky SS, Whitley C, Kopp-Schneider A, Zur Hausen H, Vilies EM. Epstein-Barr virus stimulates torque teno virus replication: a possible relationship to multiple sclerosis. PLoS One. 2012; 7(2): e32160. doi:10.1371/journal.pone.0032160
49. Alvarez-Lafuente R, García-Montojo M, De Las Heras V, Bartolomé M, Arroyo R. JC virus in cerebrospinal fluid samples of multiple sclerosis patients at the first demyelinating event. Mult Scler. 2007 Jun; 13(5): 590-5. doi:10.1177/1352458506073116
50. Barzilai O, Sherer Y, Ram M, Izhaky D, Anaya JM, Shoenfeld Y. Epstein-Barr virus and cytomegalovirus in autoimmune diseases: are they truly notorious? A preliminary report. Ann N Y Acad Sci. 2007 Jun; 1108: 567-77.
51. Sanadgol N, Ramroodi N, Ahmadi GA, Komijani M, Moghtaderi A, Bouzari M, et al. Prevalence of cytomegalovirus infection and its role in total immunoglobulin pattern in Iranian patients with different subtypes of multiple sclerosis. New Microbiol. 2011 Jul; 34(3): 263-74.
52. Zheng MM, Zhang XH. Cross-reactivity between human cytomegalovirus peptide 981-1003 and myelin oligodendrogliaglycoprotein peptide 35-55 in experimental autoimmune encephalomyelitis in Lewis rats. Biochem Biophys Res Commun. 2014 Jan; 443(3): 1118-23. doi:10.1016/j.bbrc.2013.12
53. Zivadinov R, Nasuelli D, Tommasi MA, Serafin M, Bratina A, Ukmar M, et al. Positivity of cytomegalovirus antibodies predicts a better clinical and radiological outcome in multiple sclerosis patients. Neurol Res. 2006 Apr; 28(3): 262-9.
54. Terry RL, Ifergan I, Miller SD. Experimental Autoimmune Encephalomyelitis in Mice. Methods Mol Biol. 2016; 1304: 145-60. doi:10.1007/7651_2014_88
55. Blair TC, Manoharan M, Rawlings-Rhea SD, Tagge I, Kohama SG, Hollister-Smith J, et al. Immunopathology of Japanese macaque encephalomyelitis is similar to multiple sclerosis. J Neuroimmunol. 2016 Feb; 291: 1-10. doi:10.1016/j.jneuroim.2015.11.026
56. Oleszak EL, Chang JR, Friedman H, Katsetos CD, Platsoucas CD. Theiler's virus infection: a model for multiple sclerosis. Clin Microbiol Rev. 2004 Jan; 17(1): 174-207.
57. Pachner AR. Experimental models of multiple sclerosis. Curr Opin Neurol. 2011 Jun; 24(3): 291-9. doi:10.1097/WCO.0b013e328346c226
58. Kipp M, van der Star B, Vogel DY, Puentes F, van der Valk P, Baker D, Amor S. Experimental in vivo and in vitro models of multiple sclerosis: EAE and beyond. Mult Scler Relat Disord. 2012 Jan; 1(1):15-28. doi:10.1016/j.msard.2011.09.002
59. Mecha M, Carrillo-Salinas FJ, Mestre L, Feliú A, Guaza C. Viral models of multiple sclerosis: neurodegeneration and demyelination in mice infected with Theiler's virus. Prog Neurobiol. 2013 Feb-Mar; 101-102: 46-64. doi:10.1016/j.pneurobio.2012.11.003
60. van der Star BJ, Vogel DY, Kipp M, Puentes F, Baker D, Amor S. In vitro and in vivo models of multiple sclerosis. CNS Neurol Disord Drug Targets. 2012 Aug; 11(5): 570-88.
61. Lempp C, Spitzbarth I, Puff C, Cana A, Kegler K, Techangamsuwan S, et al. New aspects of the pathogenesis of canine distemper leukoencephalitis. Viruses. 2014; 6(7): 2571-601. doi:10.3390/v6072571
62. Axthelm MK, Bourdette DN, Marracci GH, Su W, Mullaney ET, Manoharan M, et al. Japanese macaque encephalomyelitis: a spontaneous multiple sclerosis-like disease in a nonhuman primate. Ann Neurol. 2011 Sep; 70(3): 362-73. doi:10.1002/ana.22449
Send email to the article author


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hashemi N, Saeidi M. Role of viruses in the destruction of the central nervous system and its impact on the multiple sclerosis. J Gorgan Univ Med Sci 2017; 19 (2) :1-10
URL: http://goums.ac.ir/journal/article-1-3070-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 19, Issue 2 (7-2017) Back to browse issues page
مجله دانشگاه علوم پزشکی گرگان Journal of Gorgan University of Medical Sciences
Persian site map - English site map - Created in 0.05 seconds with 36 queries by YEKTAWEB 4657