[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Editorial Board::
Executive Members::
Articles Archive::
Instruction to Authors::
Peer-Review::
Contact Us::
Site Facilities::
::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Volume 18, Issue 4 (12-2016) ::
J Gorgan Univ Med Sci 2016, 18(4): 74-80 Back to browse issues page
Evaluation of Copper removal from industrial sewages by the Green microalgae Chlorella vulgaris
M Malakootian1 , Z Yousefi * 2, Z Khodashenas Limoni3
1- Professor, Environmental Health Engineering Research Center, Department of Environmental Health, Kerman University of Medical Sciences, Kerman, Iran
2- Professor, Department of Environmental Health Engineering, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran , zyousefi2001@yahoo.com
3- M.Sc Student of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
Abstract:   (7518 Views)

Background and Objective: Bioabsorbat is one of the most effective methods for the removal of heavy metals from industrial sewages. This study was done to assess the evaluation of Copper removal from industrial sewages by the Green microalgae Chlorella vulgaris.

Methods: This descriptive-analytic study was done on three samples from Bahonar Kerman copper industry sewage samples and 63 copper biosorption synthetic samples by Green microalgae Chlorella vulgaris at a constant temperature of 25°C, optimum pH 6 and contact time of 60 minutes and adsorbent concentration of 2 g/L. The rate of residual copper was determined using atomic absorption instrument. The adsorption isotherms and metal ions kinetic modeling on to the adsorbent were determined based on Langmuir isotherm, Freundlich and kinetics of type I and II.

Results: The removal efficiency was determined as 82.62% and 91.5 % in Copper real examples and synthetic samples, respectively. Based on the obtained results, copper absorption followed Langmuir model and second order kinetic equation (P<0.05).

Conclusion: Due to high absorption potential of Green microalgae Chlorella vulgaris, this method can be effectively used for copper removal from industrial sewages.

Keywords: Heavy metals, Alga Chlorella vulgaris, Wastewater, Copper Industry
Full-Text [PDF 267 kb] [English Abstract]   (16182 Downloads) |   |   Abstract (HTML)  (1251 Views)  
Type of Study: Original Articles | Subject: Environmental Health
References
1. Ulmanu M, Marañón E, Fernández Y, Castrillón L, Anger I, Dumitriu D. Removal of copper and cadmium ions from diluted aqueous solutions by low cost and waste material adsorbents. Water Air Soil Poll. 2003 Jan; 142(1): 357-73.
2. Malakootian M, Harati Nezhad Torbati Ar. [Survey efficiency of heavy metals adsorption (Cu, Cd and Pb) in aqueous solution on the saffron leaves and determine the adsorption isotherms]. Journal of Tanin Salamat (Health Chimes). 2013; 1(3): 15-23. [Article in Persian]
3. Abu Al-Rub FA, El-Naas MH, Ashour I, Al-Marzouqi M. Biosorption of copper on Chlorella vulgaris from single, binary and ternary metal aqueous solutions. Process Biochemistry. 2006; 41(2): 457-64. doi:10.1016/j.procbio.2005.07.018
4. Sanaei G. [Industrial Toxicology]. 5th ed. Tehran: Tehran University Press. 2002; pp: 63-64. [Persian]
5. Dursun Özer D, Özer A, Dursun G. Investigation of zinc(II) adsorption on Cladophora crispata in a two-staged reactor. Journal of Chemical Technology and Biotechnology. 2000 May; 75(5): 410-16. doi:10.1002/(SICI)1097-4660(200005)75:5<410::AID-JCTB226>3.0.CO;2-X
6. Ferreira LS, Rodrigues MS, Monteiro de Carvalho JC, Lodi A, Finocchio E, Perego P, et al. Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems. Chem Eng J. 2011 Sep; 173(2): 326-33. doi:10.1016/j.cej.2011.07.039
7. Maznah WO, Al-Fawwaz AT, Surif M. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia. J Environ Sci (China). 2012; 24(8): 1386-93.
8. Goyal N, Jain SC, Banerjee UC. Comparative studies on the microbial adsorption of heavy metals. Adv Environ Res. 2003 Jan; 7(2): 311-19.
9. Akhtar N, Iqbal M, Zafar SI, Iqbal J. Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr(III). J Environ Sci (China). 2008; 20(2): 231-9.
10. Singh SK, Bansal A, Jha MK, Dey A. An integrated approach to remove Cr(VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater. Bioresour Technol. 2012 Jan; 104: 257-65. doi:10.1016/j.biortech.2011.11.044
11. Lv JM, Cheng LH, Xu XH, Zhang L, Chen HL. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour Technol. 2010 Sep; 101(17): 6797-804. doi:10.1016/j.biortech.2010.03.120
12. Liu ZY, Wang GC, Zhou BC. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology. 2008 Jul; 99(11): 4717-22.
13. Přibyl P, Cepák V, Zachleder V. Production of lipids and formation and mobilization of lipid bodies in Chlorella vulgaris. J Appl Phycol. 2013; 25(2): 545-53. doi:10.1007/s10811-012-9889-y
14. Cochrane EL, Lu S, Gibb SW, Villaescusa I. A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media. Journal of Hazardous Materials. 2006 Sep; 137(1): 198-206. doi:10.1016/j.jhazmat.2006.01.054
15. Rodrigues MS, Ferreira LS, de Carvalho JC, Lodi A, Finocchio E, Converti A. Metal biosorption onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris: multi-metal systems. J Hazard Mater. 2012 May; 217-218:246-55. doi:10.1016/j.jhazmat.2012.03.022
16. Zavar Mousavi SH, Fazli M, Rahmani A. [Removal of cadmium from aqueous solution by nano structured γ- alumina]. Journal of Water & Wastewater. 2011; 22(4): 9-20. [Article in Persian]
17. SarI A, Tuzen M. Equilibrium, thermodynamic and kinetic studies on aluminum biosorption from aqueous solution by brown algae (Padina pavonica) biomass. J Hazard Mater. 2009; 171 (1-3): 973-79. doi:10.1016/j.jhazmat.2009.06.101
18. Shokohi R, Jafari SJ, Siboni M, Gamar N, Saidi S. [Removal of Acid Blue 113(AB113) dye from aqueous solution by adsorption onto activated red mud: a kinetic and equilibrium study]. Sci J Kurdistan Uni Med Sci. 2011; 16(2): 55-65. [Article in Persian]
19. Chen C, Wang X. Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind Eng Chem Res. 2006; 45(26): 9144-49. doi:10.1021/ie060791z
20. Gupta VK, Rastogi A. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass. J Hazard Mater. 2008 Jun 15;154(1-3):347-54.
21. Pistorius AM, DeGrip WJ, Egorova-Zachernyuk TA. Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy. Biotechnol Bioeng. 2009 May; 103(1): 123-9. doi:10.1002/bit.22220
22. Dursun G, Ciçek H, Dursun AY. Adsorption of phenol from aqueous solution by using carbonised beet pulp. J Hazard Mater. 2005 Oct; 125(1-3): 175-82.
23. Kumar NS, Subbaiah MV, Reddy AS, Krishnaiah A. Biosorption of phenolic compounds from aqueous solutions onto chitosanabrus precatorius blended beads. J Chem Tech Biot. 2009; 84(7): 972-81. doi:10.1002/jctb.2120
24. Aksu Z, Akpinar D. Competitive biosorption of phenol and chromium(VI) from binary mixtures onto dried anaerobic activated sludge. Biochem Eng J. 2001; 7(3): 183-93. doi:10.1016/S1369-703X(00)00126-1
25. Sağ Y, Aktay Y. Kinetic studies on sorption of Cr(VI) and Cu(II) ions by chitin, chitosan and Rhizopus arrhizus. Biochem Eng J. 2002 Nov; 12(2): 143-53. doi:10.1016/S1369-703X(02)00068-2
26. Banat FA, Al-Bashir B, Al-Asheh S, Hayajneh O. Adsorption of phenol by bentonite. Environ Pollut. 2000 Mar; 107(3): 391-8.
27. Rezaei H. Biosorption of chromium by using Spirulina sp. Arabian Journal of Chemistry. 2013; pp: 1-8. doi:10.1016/j.arabjc.2013.11.008
28. Chen Z, Ma W, Han M. Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): application of isotherm and kinetic models. J Hazard Mater. 2008; 155(1-2): 327-33. doi:10.1016/j.jhazmat.2007.11.064
29. Gagrai MK, Das C, Golder AK. Reduction of Cr(VI) into Cr(III) by Spirulina dead biomass in aqueous solution: kinetic studies. Chemosphere. 2013 Oct; 93(7): 1366-71. doi:10.1016/j.chemosphere.2013.08.021
30. Malakootian M, Khazaei A. [Comparing the efficiency of nano Zerovalent Iron particles and Manganese compounds in Cadmium Ion removal from aqueous environments]. J Ilam Uni Med Sci. 2014; 22(2): 93-103. [Article in Persian]
Send email to the article author


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Malakootian M, Yousefi Z, Khodashenas Limoni Z. Evaluation of Copper removal from industrial sewages by the Green microalgae Chlorella vulgaris. J Gorgan Univ Med Sci 2016; 18 (4) :74-80
URL: http://goums.ac.ir/journal/article-1-2959-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 18, Issue 4 (12-2016) Back to browse issues page
مجله دانشگاه علوم پزشکی گرگان Journal of Gorgan University of Medical Sciences
Persian site map - English site map - Created in 0.04 seconds with 36 queries by YEKTAWEB 4657