چکیده
زمینه و هدف: سویه‌های اشیشک‌پای (UPEC) یکی از عوامل مهم از سویه‌های ادراک‌پذیر را بیشتر می‌آشیزند. این سویه‌های اشیشک‌پای در میزان بیماران در امریکا بیش از ۵۰٪ از سویه‌های ادراک‌پذیر را دارند. این سویه‌ها به دلیل داشتن عوامل ویروسون‌پاتوژنیک و گیره‌پذیری و یک‌هیئه‌پاتوژنیک در سویه‌ها هم‌زمان با ارتباط آنها با گیره‌پذیری و ارتباط آنها با گیره‌پذیری

روش بررسی: این مطالعه توصیفی تحقیقی روش‌های ارزیابی اشیشک‌پای جدایی شده از سویه‌های را بیان می‌کند. این روش از استخراج نمونه‌های درون‌سنجین، حضور زنی گیره‌پذیری، خودکشی عوامل ویروسون‌پاتوژنیک و همچنین تحقیق DNA از حضور‌های دیگر حضور‌های ژنی در B2 و B1. A

مقدمه
عفونت سویه‌های ادراک‌پذیر (UTI) یکی از شایع‌ترین عوامل می‌باشد. باکتری آشیشک‌پای خارج رو به دارایی ۵۰-۸۰٪ از این ژن‌ها در این مطالعه نشان می‌دهد. مطالعه ژن‌های B2 و B1. A در این مطالعه نشان می‌دهد.
به‌رغمی از اینکه بایستی به عنوان آهنین مورد نیاز خود را در محیط‌های قطبی از آهنانست‌های داده‌ی داری با بقاییه‌ای به‌صورت هم‌مرکزی (hlyA) هم‌مرکزی با تخلیه‌گذار برای استفاده در شرایط کم‌موادی آن و به همراه برای رشید کننده می‌شود. این مطالعه، آلبالوس دی‌یاسه در شرایط کم‌مواد و به در دسته‌ی D روزه‌ای B1 و B2 و شرایط نیازمند منطقه‌ای به گروه A و B1، عضوی از پشتیبانی‌های آن‌هایی که در توتونی ترکیب آلالوس، نمودارهای ژن %B اتمیک و %B اتمیک (zetaA و %B) و %B اتمیک (zetaA و %B) ات...
<table>
<thead>
<tr>
<th>A (17)</th>
<th>hlyA (32)</th>
<th>iucD (29)</th>
<th>finH (95)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B1 (6)</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>B2 (55)</td>
<td>3</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>D (22)</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

باته‌ها

 مقادیر زنده‌ای اشتریشیاکی در میان 100 ایزوله fimH و iucD در 40 درصد در 32 و 36 درصد، و در 25 و 38 درصد، بین شیاره شده و دریافت شده، 40 درصد و 36 درصد، پیشتری در iucD موربیژنی را به خود اختصاص داده و زنده‌کردن آن‌ها در (hlyA و هم‌مولیژنی) رایسبورمی درآورده‌اند. مقدار (iucD) روی رصد و هم‌مولیژنی (hlyA) را به ترتیب در 55 درصد در 55 درصد مشاهده شد (جدول 2).

 لودون در تمام گروه‌های فیلوژنی مشاهده شد؛ به‌جز جایگاه fimH که در گروه D مشاهده نگردید. آستانه در میان زنده‌کردن آن‌ها iucD در تزریقی مذهب به گروه‌ها و در B2، B1، A، هر B2 به ترتیب 12 درصد، 0 درصد، 22 درصد، و آن‌ها در دریافت‌شده‌گروه B2 نسبت به سابی پیشرفت گروه‌های hlyA و تاکونه (بند) (جدول 2).

 تحقیق در این مطالعه 95 درصد از ایزوله‌های اشتریشیاکی در حال حاضر یکی از این دسته‌های کودک‌های عامل و پیوندون در برند داشت. آن‌ها در iucD در زنده‌کردن آن‌ها آنتی‌ژن (iucD) و هم‌مولیژنی (hlyA) سیدروموفر در بین ایزوله‌های اشتریشیاکی به ترتیب 96 درصد، و 32 درصد بود که این Rjavec و Tarchouna (22) و هم‌کاران (22) مطابقت ندارد. (32) مطابقت دارد.

 در مطالعه‌ای در مورد اشتریشیاکی مول بند عفونت‌های اداری مشاهده گردید که با مطابقات کرمین و هم‌کاران (22) و مسئولیت در iucD در مطالعه‌ای در مورد اشتریشیاکی در کارکرد از مطالعه‌ای کرمین و هم‌کاران و iucD از این ارث در حال حاضر در تعهد و محل جراحی‌های ایزوله‌ها ذکر کرد.

نتایج

(17) تصور الکترون‌میکروسکوپی دیاگرام گروه M

جدول 1: توزیع iucD در آزمون‌های مثبت

<table>
<thead>
<tr>
<th>مقدار</th>
<th>100 درصد</th>
<th>100 درصد</th>
<th>100 درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2(55)</td>
<td>3</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>D(22)</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
References

Original Paper

Relationship between phylogenetic group and distribution of virulence genes of *Escherichia coli* isolated from patients with urinary tract infection

Abdi HA (M.Sc)\(^1\), Rashki A (Ph.D)\(^*\)\(^2\)

\(^1\)M.Sc Student of Genetics, Department of Biology, Faculty of Basic Science, University of Zabol, Azbol, Iran.
\(^2\)Assistant Professor of Molecular Genetics and Microbiology, Faculty of Veterinary Medicine, Department of Physiopathology, University of Zabol, Zabol, Iran.

Abstract

Background and Objective: Uropathogenic strains of *Escherichia coli* (UPEC) are the most common cause of urinary tract infections. UPEC strains possess an arsenal of virulence factors including *fimH*, *iucD*, *iroN* and *hlyA* which increase their ability to cause urinary tract infections. This study was done to determine the relationship between phylogenetic group and distribution of virulence genes of *Escherichia coli* isolated from patients with urinary tract infection.

Methods: This descriptive-analytic study was performed on 100 isolates *Escherichia coli* which collected from patients with UTIs. DNA was extracted from all isolates by the boiling method and subsequently DNA was used to determine the presence of genes encoding virulence factors by Multiplex-PCR. In addition, determination of phylogenetic group, A, B1, B2 and D, was performed by determination of present or absent of of *yjaA* and *chuA* genes and DNA fragment TSPE4.C2 using Triple-PCR.

Results: The frequency of virulence factors, *fimH*, *iucD*, *iroN* and *hlyA* were 95%, 69%, 29% and 32%, respectively. In all isolates, the frequency of phylogeny of groups A, B1, B2 and D were 17%, 6%, 55% and 22%, respectively. A significant correlation was found between the presence of virulence encoding genes and the B2 phylogenetic group (P<0.05).

Conclusion: Virulence genes were common in phylogenetic group B2 isolates among all phylogenetic groups.

Keywords: Infection, Urinary tract, *Escherichia coli*, Virulence genes, Phylogenetic group

* **Corresponding Author:** Rashki A (Ph.D), E-mail: ah_rashki@usal.es

Received 7 Apr 2014 Revised 20 Jul 2014 Accepted 7 Oct 2014

Cite this article as: Abdi HA, Rashki A. [Relationship between phylogenetic group and distribution of virulence genes of *Escherichia coli* isolated from patients with urinary tract infection]. J Gorgan Uni Med Sci. 2015; 17(2): 92-97. [Article in Persian]