اثرات هیدروژن شدن زنجیر های اسیدهای چرب در ماهیت مونوalkانولزیل دی اسیل گلسپرون

دکتر آزادرا منصوریان*، دکتر اختر سیفی**

چکیده
مکانیسم آلکانولزیل دی اسیل گلسپرون یک الکانولیبت با دو شاخه از اسیدهای چرب غیرپاپتیع همراه می باشد. این الکانولیبت، با دو شاخه از اسیدهای چرب غیرپاپتیع به وسیله نیروهای بیشتری می‌تواند به‌طور مزمن توسط اسیدهای چرب غیرپاپتیع همکاری کند. در این مقاله، تأثیر مکانیسم آلکانولزیل دی اسیل گلسپرون بر روی فرآیندهای شیمیایی را بررسی می‌کنیم. می‌توانیم به‌طور کلی، الکانولیبت با دو شاخه از اسیدهای چرب غیرپاپتیع می‌تواند به‌طور مزمن توسط اسیدهای چرب غیرپاپتیع همکاری کند.

واژه‌های کلیدی: مونوalkانولزیل دی اسیل گلسپرون، فشار نرمی، الکانولیبت، میکروسکوپ الکترونی
بحث

نوعی از مهم‌ترین خصوصیات بازی بیشتر غذایی پیلوئولیزر (بینی‌پوشی) حضور اسیدهای جرب با زنجیره‌های متقارن و مخصوصاً اسیدهای جرب با تعداد 16 و 18 کربنی می‌باشد که درصد بالایی را شامل می‌شوند (1). اگر اسید جرب 16 کربنی کاملاً اشباع باشد اسیدهای متقارن تا اکثریت همین اسیدچرب 16 کربنی دارای یک بیوند دوگانه باشد (16:1) اسید بالیولیزر تام‌آیده می‌شد. در دوره زنجیره 18 کربنی، اسید استرداریک (18:2) کاملاً اشباع است و اسید لبنولیزر (18:1)، اسید استرداریک (18:2) و اسید لبنولیزر (18:3) به ترتیب دوای پیوند ایسه پیوند غیراشباع می‌باشد. با این شکل که اسید آراشیدی‌نکت (18:2) اسید 20 کربنی با چهار پیوند 8S نیز از اسیدهای جربی است که در غشاء پیلوئولیزر دیده می‌شود (2) اسیدهای جرب موجود در غشاء هم از نظر طول زنجیره و هم از نظر تعداد پیوندهای غیراشباع 8S به صورت متقارن‌تکنولیک بودند. طول زنجیره‌ها و وضوح شکل آنها به طور کاملاً توسط اشیاء حساس به اثرات هیدرونقاشی این زنجیره‌ها پژوهش‌های غشاء و اثرات هیدرونقاشی این زنجیره‌ها

واسیل و روش‌ها

1- بای‌هی به‌پیلوئولیزر نشیمن‌ی غشاء بعد برای نهایت به‌پیلوئولیزر 3 میلی‌لیتر از سیستم کروماتوگرافی 3 میلی‌لیتر در دفعه‌ای باشد. با این روش تمام

1 - Menegaloctosyldiacyl glycerols
لیپیدها خشک و پیمگان از بورت خارج می‌شوند. برای
جداسازی MG از خلالی که به نسبت مناسب کلروفوم و استاندارد می‌شود، استفاده می‌شود. بنابراین بعد از
خارج شدن کلروفوم در محله بعدی از خلالی کلروفوم
استحکام به مقدار پنجم پنج حجم مقدار فلورسیل داخل
بیشتر استفاده می‌شود و این حال را همان سرعت 2
میلی‌لیتر در دقیقه از بورت منگنزتم که MG با این حال از
بورت خارج خواهد شد. پس از هنگام این محلول
کمک دستگاه تظییر MG ۳۰ منیلی‌لیتر
کلروفوم اضافه می‌شود (۲).

۳- فاصله توناکتوکسیل دی اسیل کلیرور
خلاص و عواری از پیمگان از قن
کرومئورگاما با لاشه نازک (TLC) استفاده می‌شود. حالا
مورد نیاز است. استاندارد-آب با نسبت حجمی
خالص MG (۹:۱) بوده و برای ایمنی‌بندی از تهیه
۱۰۰ درصد باز یک استاندارد استفاده می‌شود (۳).

۴- هیدروژن نمونه توناکتوکسیل دی اسیل کلیرور
از بین بیشانش‌های شده با گاز نیتروژن
استفاده می‌شود و برای هیدروژن دود که نسبت به اندازه ورن
لیپید به آن کاتالیزور واکنش هیدروژن اتصال می‌شود
و به این مخلوط باید مدت ۱۰ دقیقه گاز نیتروژن دمی
و سپس گاز هیدروژن (۱۰:۹) را به محیط اضافه می‌نماییم.
برای هیدروژن‌سیون کامل این عمل را باید
ساعت ادامه دهیم. بعد از این مدت از دستگاه ساختارفرو
برای جداسازی کامل کاتالیزور از محلول
موکیم، به‌طور مناسب لیپید خالص و عواری از سایر مواد
زائد از روش کرومئورگاما با لاشه نازک (TLC) استفاده

۱- Thin layer chomanography
۲- Gas liquid chromatography
۳- Freeze Fracture Device
۴- مطالعات لیپید نمونه هیدروژن که در انجام این نوع آزمایش است.
جدول شماره ۱: ترکیب اسیدهای چرب

<table>
<thead>
<tr>
<th>mol% MG</th>
<th>16.0</th>
<th>16.1</th>
<th>16.5</th>
<th>16.7</th>
<th>16.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.0</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>21.5</td>
<td>52.5</td>
</tr>
</tbody>
</table>

جدول شماره ۲: ترکیب اسیدهای چرب

<table>
<thead>
<tr>
<th>mol% MG</th>
<th>16.0</th>
<th>16.1</th>
<th>16.5</th>
<th>16.7</th>
<th>16.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>75</td>
<td>100</td>
<td>75</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

۲- نتایج مطالعات انجام شده با میکروسکوپ الکترونی
الف) میکروگراف طبیعی (MG) میکروسکوپ الکترونی استخراج شده از غشاء تیلاکوتید کروم بلات در شکل شماره ۱ نشان داده شده است. نتایج حاصل از این مطالعات نشان می‌دهد که MG شکل استخوانی شکل (Hexagonal) دارد. برای این میکروگراف قبل از شروع شکست

ب) MG به مرحله دوم نگهداری شد. این نگهداری باعث می‌شود که MG به درجه سالمی گراد ۲۰ درجه سانتی‌گراد راه بگیرد (۴).
شکل شماره ۳: (b) میکروگراف تهیه شده از مخلوط مسایل تعقیبی MG اشیاع شده، بنابراین MB شکل‌پذیر شده. (c) پیوندهای غیراشیاعی سیس. به‌جای نگرفتاری تغییرات شکل‌پذیری تهیه شده از مخلوط مسایل تعقیبی MG اشیاع شده، بنابراین MB شکل‌پذیر شده.
در اشیاع شدن اسیدهای چرب به پیش‌های غشاء پیلوژیک
دختان نمایند. به نظر می‌رسد که سطوح پرای تغییر و
تحولات در غشاء که برای ادامه حیات سطوح به آن نیاز
می‌باشد در شرایط خاص از طرف جنین مکانیسم‌ها و
واکنش‌ها اعمال حیاتی مورد نظر خود را ممکن می‌سازد.

سیره‌بی‌پیلوژیکی فیزیولوژی به تغییرات مختلفی در غشاء
نبای خواهد داشت. این تغییرات و اعمال خاص از طرف آنزیم‌ها
(5) و هم از طرف تغییرات PH و تغییرات بیونی ایجاد
می‌شود (6).

قدرتانی بدن و سیستم زنجیره پیلوژیکی از بخش
پیژوهانی و دکتر نویسی برای ایجاد مکانیسم‌کوب
الکترونی کینگزکالج دشگاه، لندن تشری و قدردانی می‌گردد.

منابع

2 - Harrison R. Lunt G. Biological Membrane, second Ed, Great Britain (Scotland), Thomsonリthe L.d 1986; p. 102-129

Biophysica Acta. 1983; (728): 129-138