اثرات هیدروژن شدن زنجیره‌های اسیدهای چرب
در ماهیت منوگالاکتوزول در اسیل گلسبرول

پیش‌بینی می‌شود که هم‌اکنون که بعد از مصرفه شدن و قراردادن منوگالاکتوزول در محیط آبی، ساختار منوگالاکتوزول به طور کامل شکل گرفته و جهت ویژه‌ای مورد توجه قرار گیرد. منوگالاکتوزول در اسیل گلسبرول طبیعی را که باعث ایجاد منوگالاکتوزول در محیط آبی می‌شود. بنابراین مراحل تولید منوگالاکتوزول در محیط آبی که توسط تغییرات ایجاد می‌شود، در این محیط انجام می‌گیرد. منوگالاکتوزول در اسیل گلسبرول طبیعی را می‌توان باعث ایجاد منوگالاکتوزول در محیط آبی که توسط تغییرات ایجاد می‌شود، در این محیط انجام می‌گیرد. منوگالاکتوزول در اسیل گلسبرول طبیعی را می‌توان باعث ایجاد منوگالاکتوزول در محیط آبی که توسط تغییرات ایجاد می‌شود، در این محیط انجام می‌گیرد.

واژه‌های کلیدی: منوگالاکتوزول در اسیل گلسبرول، غشاء زیستی، هیدروژن‌سازی، میکروسکوپ الکترونی
مقدمه

یکی از مهم‌ترین خصوصیات بارز بیشتر غشاء‌های پیلوژوئیک (زیستی) حضور اسیدهای جرب و زنجیره‌های متقارن و مخصول اسیدهای جرب به تعداد ۱۴ و ۱۶ کربنی می‌باشد که در صورت بالا رفتن میزان غشاء (۰.۴) اگر استید جرب ۱۲ کربنی کاملاً اشباع باشد استید بالابهترین اسیدی است. اگر همین استیدچرب ۱۴ کربنی درایی یک پیوند دوگانه بیانگر است، در مورد زنجیره ۱۸ کربنی اسید استترایک (۱۴/۲) کاملاً اشباع است و استید نیتروژیک (۱۴/۲) و اسید نیتروژیک (۱۴/۲) به ترتیب دایره یک پیوند این سه پیوند غیرشباع می‌باشند. همچنین منظور شده است که استیدآفسیدزایک (۱۴/۲) استید و استید ۱۶ کربنی برای چهار پیوند (۴/۰) از استیدهای جربی است که در غشاء پیلوژوئیک دیده می‌شود.

اسیدهای جرب موجود در غشاء هم از نظر طول زنجیره و هم از نظر تعداد پیوندهای غیرشباع ۵/۲ به صورت متروژیک بوده و طول زنجیره و هم و ضعیف اشباع شده‌اند. با استفاده از شکل و حجم مکمل یک بار این موضوع به منظور بررسی وضعیت اشباع غشاء و اثرات هیدروژن‌اسیدهای زنجیره‌های پرپوزه، انجام شده است.

روش‌ها

۱- به تنهایی لیپیدهای فضایی غشاء پیلوژوئیک برای تهیه لیپیدهای فضایی غشاء ۱۰۰ گرم از پرپوزه

۲- انتخاب شده، را در ۳۰۰ میلی‌لیتر محلول کاربرفورام و متابولی (۱۲/۰) دندان حجمی هم‌زیستی می‌کنند، انگیزه
لیبدهای خشخاش و پیگمان‌ها از بورت خارج می‌شوند. برای مثال، MG از داخل که به نسبت مساوی شامل گلوکز و استون می‌باشد، استفاده می‌شود. بنابراین بعد از خارج شدن گلوکز و استون در محله‌ی بعدی از حلال کلروفرم استقرار می‌شود و این درآمدهای با هم می‌پردازند. کلروفرم در مدت ۱۵ دقیقه از بورت می‌گذراند که MG با این حال از بورت خارج خواهد شد. پس از آنکه این محلول به کمک دستگاه تقطیع MG خارج نمی‌شود و به آن دو میلی لیتر کلروفرم اضافه نمی‌شود.

۲- به نام مولکول‌وزن دستگاه غلیسه خالص بایسته MG خالص و عادی از پیگمان از قرن کروماتوگرافی با لیتیوم نازک (TLC) استفاده می‌شود. حلال مودر نیاز استون - آب با نسبت حجمی ۵:۷ یا بایسته (۴۰/۶۰) بوده و بسیار اختصاصی از تهیه MG خالص است. استاندارد استفاده شده است (۳).

۳- هیدروژن نمودن مولکول‌وزن‌دستگاه غلیسه با دستگاه کلروفرم MG از بین اشباع شده با گاز نیتروژن استفاده می‌شود و برای هیدروژن کردن باید به افزایش وزن پیش بینی کنید. MG و کمک کاتالیزور هیدروژن کردن و نتایج حاصله با استفاده از دستگاه (GLC) در جدول شماره ۱ مربوط است. این نتایج نشان می‌دهد که هیپروناسیون کامل صورت گرفته است.

1. Thin layer chromatography
2. Gas liquid chromatography
3. Freeze Fracture Device
جدول شماره ۱: ترکیب استخوان یا چرب

<table>
<thead>
<tr>
<th>mol% MG</th>
<th>۱۶۵۰</th>
<th>۱۶۱۱</th>
<th>۱۶۱۰</th>
<th>۱۶۱۱</th>
<th>۱۶۲۲</th>
<th>۱۶۳۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۸</td>
<td>۷</td>
<td>۱</td>
<td>۱</td>
<td>۱۷۰۵</td>
<td>۵۲۷۵</td>
<td>۵۲۷۵</td>
</tr>
</tbody>
</table>

جدول شماره ۲: ترکیب استخوان چرب

<table>
<thead>
<tr>
<th>mol% MG</th>
<th>۱۶۵۰</th>
<th>۱۶۱۱</th>
<th>۱۶۱۰</th>
<th>۱۶۱۱</th>
<th>۱۶۲۲</th>
<th>۱۶۳۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۸</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

۲- نتایج مطالعات انجام شده با میکروسکوپ الکترونی
الف) میکروسکوپ الکترونی (mg) میکروسکوپ الکترونی استخراج شده از غشاء تیلاکوئید کلرپلاست در شکل شماره ۱ نشان داده شده است. نتیجه خاصی از این مطالعه تکثیر و تحلیل نشان داده که در ساختاری گیلکولیپید نمی‌تواند به صورت ساختار صفحه‌ای همان شکل‌بندی و جهت استخوان یا چرب مشابه داشته باشد. برای تهیه این میکروسکوپ الکترونی گیلکولیپید نمی‌تواند به صورت ساختار صفحه‌ای همان شکل‌بندی و جهت استخوان یا چرب مشابه داشته باشد. برای تهیه این میکروسکوپ الکترونی گیلکولیپید نمی‌تواند به صورت ساختار صفحه‌ای همان شکل‌بندی و جهت استخوان یا چرب مشابه داشته باشد. برای تهیه این میکروسکوپ الکترونی گیلکولیپید نمی‌تواند به صورت ساختار صفحه‌ای همان شکل‌بندی و جهت استخوان یا چرب مشابه داشته باشد. برای تهیه این میکروسکوپ الکترونی گیلکولیپید نمی‌تواند به صورت ساختار صفحه‌ای همان شکل‌بندی و جهت استخوان یا چرب مشابه داشته باشد.

ب) اشباع شده
همان طور که در بحث و سوال‌ها و روشهای بیان شده گیلکولیپید طبیعی را به کمک گاز هیدروژن، کاملاً اشباع کرده و بینهایت دوگانه دارا برای پایه‌های اشباع شده در فیبر والکولاکتوزیل دی اسیل اسید گلیسرول کاملاً هیدروژن به شده آن به میکروسکوپ نمونه
lipid extracts of chloroplast membrane. Biochimica


