برداشتهای جهش در اگزون‌های ۱۰ و ۱۲ زن BRCA1 در ۲۰ بیمار
مبنا به سرطان پستان فامیلی

حسین نیموری، دکتر پروین مهدی‌پور، دکتر مرتضی عطری، محمد رضا میرزاپور

چکیده
سرطان پستان یکی از رایج‌ترین علل مرگ در بین زنان مبتلا به سرطان می‌باشد. بیش از ۷۰ درصد از خانواده‌های دارای سرطان پستان فامیلی در زن مستعد کننده به سرطان، معمولاً به BRCA1 یا BRCA2 مشخص می‌شود. در این مطالعه، نمونه‌های ۳۰ زن مبتلا به سرطان پستان که سابقه فامیلی در بزرگ‌سالی‌ها داشته، به مرحله PCR-SSCP و بررسی فناوری داده شدند. در این آزمایش، نمونه‌ها به طور نهایی به ۱۲ جهش مشخص شدند. در نهایت، نتایج این مطالعه از دست آمده این است که الگوی جهش در اگزون‌های ۱۰ و ۱۲ که در بررسی جهش در اگزون‌های ۱۰ و ۱۲ سرطان پستان و سرطان پستان فامیلی شناخته شده است، این مطالعه می‌تواند به بررسی نهایی این اگزون‌ها در جهش‌ها و فاکتورهایی مرتبط با این مطالعه با آنها، می‌تواند نقشی در کشف جهش‌های اگزون‌های ۱۰ و ۱۲ کمک کند.

SSCP، BRCA1
مقدمه

سروط پستان شاید یک نوع سروط در زنان می‌باشد. هنگامی که زن باید به فاصله‌های مختلفی از سروط پستان، دچار می‌شوند. سروط پستان را از نظر استعداد دیستیکی به سه دسته سروط پستان نگاه می‌کنیم: فاملی، دیستیکی و دیستیکی مزمن. موادی از سروط پستان راک و غیرکشنده در جریان یکی می‌باشد و دو فرد ناشی از می‌شوند. به تدریج، سروط پستان انسان نسبت نسبتاً کمی دارد. در دسته سروط پستان فاملی، قرار می‌دهند. درصد مبتلاان در این دسته قرار می‌گیرد.

BRCA1 و BRCA2 همیشه برای دخیل در سروط پستان می‌باشند. BRCA1 در برای 10% از موارد سروط پستان فاملی مشاهده می‌شود. این رقم در مبتلاان به سروط پستان انسان به 65 درصد می‌رسد. از این رو، در این برای BRCA1 به عنوان زن مستیکی، کندنی یا نامگذاری سروط پستان این به حساب می‌آید.

برای BRCA1 یک زن سرکوکینگ توده می‌باشد. این زن در جدایگی

21 قرار می‌گیرد: "وظیفه برای 100 بکیلولور در دارست و شامل 22 اگزون آگزران به دست آمده (اگزران یک-و-دو)". اگزون‌های 1 و 2 (همچون‌های 1 و 2) می‌باشد. اگزون‌های 1 و 2 به‌طور کامل دانسته شده و در مقالات مختلف داده‌های ترمیم DNA و تنظیم جرخه‌های سلولی (1) تهیه کننده و تکنیک جنین (2) و عامل سه‌پیروگرافی (3) به آن نسبت می‌دهند.

از میان آگزران که بر این کردن، آگزران 11 به طول برای

24 کیلوکالری بخش انگریز را شامل می‌شود و بخش‌های یک‌تایی راه‌ dẫn RAD51 و گروینی را در خود جای داده است. آگزران 3 حفظ نیاز طول دارد و

21 حفظ تا بی‌روی نمونه می‌شود. شرکت سی‌ان‌دی آگزران 10 به طول برای

21 حفظ نیاز تا بی‌روی NLS قرار دارد. آگزران 12 نیز

21 حفظ نیاز و بی‌روی NLS باعث اندک‌تر اضافه می‌شود.

در این مطالعه، 34 بیمار مبتلا به سرطان پستان فامیلی می‌باشند و

21 حفظ تا بی‌روی NLS باعث اندک‌تر اضافه می‌شود.

در این مطالعه، 34 بیمار مبتلا به سرطان پستان فامیلی می‌باشند و

21 حفظ تا بی‌روی NLS باعث اندک‌تر اضافه می‌شود.

21 حفظ تا بی‌روی NLS باعث اندک‌تر اضافه می‌شود.
جدول ۱: مشخصات پروپرمایک تگ‌های ۱۰ و ۱۲

<table>
<thead>
<tr>
<th>Gene</th>
<th>Exon</th>
<th>Primer</th>
<th>Sequence</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1</td>
<td>3</td>
<td>Forward</td>
<td>5TCTTGACACAGCACGAGATTTTA-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>5TTGGACTTTCGTTCATCTTA3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Forward</td>
<td>5TCTGCTAGCGTTTGATGTAACG-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>5TATCTACCCACATCTCTTCAG-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Forward</td>
<td>5GTCTCTGCAATTGAGAGAAA-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>5TCTCCACGCAGAACTGTTAGT-3</td>
<td></td>
</tr>
</tbody>
</table>

در پایان کار به کمک آزمایش SSCP، در جمهوری در اگزاو ۲۰۰۳ تشخیص آسیب‌شناسی ۴۰۰۰ نمونه سرطان پستان از بیماران و بیماران دارای جمهوری و نشان می‌دهد.

یافته‌ها

مشخصات آسیب‌شناسی ۳۰٪ متابولا سرطان پستان از پرونده‌های بیمارستان استخراج شد. در مجموع بیماران ۲۳۴ نمونه سرطان پستان، ۲۱۷ در جدول ۲ و ۱۷ نمونه در جدول ۳ محل نوید در جمهوری شناخته شدند. وسعت گیری استروژن، مشخصه آسیب‌شناسی در جمهوری تماشای نمود. رانش‌های ارگون‌های ۱۱ و ۱۲ در بیماران PCR بکر شدند. مقادیر DNA و PCR را روش SSCP و PCR کتور شدند.

از آنگاه اگزاو ۱۰۳۳، تعداد بیماران PCR گروه‌های ۱۱ و ۱۲ را روش SSCP شناخته شدند. در شکل ۲ نکات زیر SSCP را روش آزمایش شناخته نشان می‌دهد.

جدول ۲: نویز فراوانی از ۱۰۰ نمونه آسیب‌شناسی و درجه تمایل نرده در بیماران مرد مطالعه

<table>
<thead>
<tr>
<th>نویز فراوانی</th>
<th>درجه تمایل نرده</th>
</tr>
</thead>
<tbody>
<tr>
<td>I invite DC</td>
<td>4</td>
</tr>
<tr>
<td>II In DC</td>
<td>2</td>
</tr>
<tr>
<td>III 3 LC</td>
<td>1</td>
</tr>
<tr>
<td>IV 4 PC</td>
<td>1</td>
</tr>
<tr>
<td>V Fibro</td>
<td>1</td>
</tr>
<tr>
<td>VI unknown</td>
<td>9</td>
</tr>
</tbody>
</table>

1. Invasive Ductal Carcinoma
2. Infiltrative Ductal Carcinoma
3. Infiltrative Lobular Carcinoma
4. Invasive Papillary Carcinoma
5. Fibroadenoma
جدول ۲: مشخصات اسپی راکت‌های PCR برای فراوانی ژنتیک در ژن‌های مادری مطالعه به روش PCR-SSCP

<table>
<thead>
<tr>
<th>سن</th>
<th>محل نوید</th>
<th>آسیب‌شناسی</th>
<th>اندازه نوید</th>
<th>شرح نوید</th>
<th>ویژگی‌گذاری</th>
<th>پذیرش گیرندگی</th>
<th>اثرات ضروری</th>
<th>نیاز به مراحل</th>
<th>اندازه نوید</th>
<th>آسیب‌شناسی</th>
<th>محل نوید</th>
<th>سن</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵</td>
<td>R</td>
<td>Inf.LC</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۶</td>
<td>R</td>
<td>Inf.LC</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰</td>
<td>L</td>
<td>Inf.LC</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۹</td>
<td>R</td>
<td>Inf.LC</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۸</td>
<td>R</td>
<td>Inf.LC</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷</td>
<td>R</td>
<td>Inf.LC</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>R</td>
<td>Inf.LC</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵</td>
<td>R</td>
<td>Inf.LC</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴</td>
<td>R</td>
<td>Inf.LC</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>R</td>
<td>Inf.LC</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نمودار ۱: توزیع فراوانی ژن‌های در سه آکرون به قرار زیر است.

نمودار ۲: توزیع تعداد مطالعه در سه آکرون به قرار زیر است.

شکل ۲: نتایج حاصل از PCR و محصولات SSCP روی جنین آکرون به مراحل تشخیصی دانش‌آموزی، برای نمودار ۱ و جنین آکرون مادری نشان داده شده است. نشان دهنده PCR را پس از ده سال، ۱۶ سال و ۱۲ سال مادر و پدر از آن شانه مادری نشان می‌دارد.

بحث:

نام دنیای انسان به استحکام حاصل در پایان یافته و از نظر بایتی سیستم استار سیستم است. به معنی ناپایدار و در پیش مطالعات توسعه آنها، این حاصل جهت جهش را تا پایان دارد. امکان اینکه آنها را در جهش را تا پایان در بررسی قرار می‌دهد (۳). مطالعه حاضر نشان دهنده تعداد موارد بررسی انتخاب ژن‌ها و انتخاب تعداد موارد شاید باشد که نتایج تا بسته‌بندی آنها از این مطالعه را با دیگر مطالعات به راحتی مقایسه کنیم.
جدول ۵ جهش در اگزون‌های ۱۰، ۱۲ و ۱۳ نزن

<table>
<thead>
<tr>
<th>Reference</th>
<th>Population</th>
<th>Frequency</th>
<th>Effect</th>
<th>Mutation type</th>
<th>Codon</th>
<th>Nucleotide</th>
<th>Exon</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲</td>
<td>Ashkenazi</td>
<td>۱/۵۰</td>
<td>Stop at 39</td>
<td>Frameshift</td>
<td>۳۳</td>
<td>۲۳OdelAA</td>
<td>۳</td>
</tr>
<tr>
<td>۱۳</td>
<td>Japan</td>
<td>۱/۳۰</td>
<td>Polymorphism</td>
<td>Silent</td>
<td>-</td>
<td>۲۳</td>
<td>۳</td>
</tr>
<tr>
<td>۱۴</td>
<td>U.S.A.</td>
<td>۱/۳۳</td>
<td>Polymorphism</td>
<td>Silent</td>
<td>۳۸</td>
<td>۲۳۳</td>
<td>۳</td>
</tr>
<tr>
<td>۱۵</td>
<td>Ashkenazi</td>
<td>۱/۴۵</td>
<td>Polymorphism</td>
<td>Silent</td>
<td>۳۸</td>
<td>۲۳۳</td>
<td>۳</td>
</tr>
<tr>
<td>۱۶</td>
<td>Ashkenazi</td>
<td>۱/۵۰</td>
<td>Polymorphism</td>
<td>Silent</td>
<td>۳۸</td>
<td>۲۳۳</td>
<td>۳</td>
</tr>
<tr>
<td>۱۷</td>
<td>Canada</td>
<td>۱/۳۲</td>
<td>Tyr->lys</td>
<td>Missense</td>
<td>۴۲</td>
<td>۳</td>
<td>۳</td>
</tr>
<tr>
<td>۱۸</td>
<td>France</td>
<td>?</td>
<td>Stop at 49</td>
<td>Frameshift</td>
<td>۴۰</td>
<td>۲۴۳delT</td>
<td>۳</td>
</tr>
<tr>
<td>۱۹</td>
<td>Ashkenazi</td>
<td>۱/۴۵</td>
<td>C->T</td>
<td>Nonsense</td>
<td>۱۳۹۵</td>
<td>۴۳۰۲</td>
<td>۱۲</td>
</tr>
<tr>
<td>۲۰</td>
<td>Italy</td>
<td>۱/۳۵</td>
<td>delAG-ter</td>
<td>Frameshift</td>
<td>۱۳۳۷</td>
<td>۴۲۳۹</td>
<td>۱۲</td>
</tr>
<tr>
<td>۲۱</td>
<td>German</td>
<td>۱/۲۷</td>
<td>delAG-ter</td>
<td>Frameshift</td>
<td>۱۳۸۹</td>
<td>۴۲۵۲</td>
<td>۱۲</td>
</tr>
<tr>
<td>۲۲</td>
<td>Ashkenazi</td>
<td>۱/۳۳</td>
<td>C->T</td>
<td>Nonsense</td>
<td>۱۳۹۵</td>
<td>۴۳۰۲</td>
<td>۱۲</td>
</tr>
<tr>
<td>۲۳</td>
<td>Ashkenazi</td>
<td>۱/۴۵</td>
<td>C->T</td>
<td>Nonsense</td>
<td>۱۳۹۵</td>
<td>۴۳۰۲</td>
<td>۱۲</td>
</tr>
<tr>
<td>۲۴</td>
<td>England</td>
<td>?</td>
<td>C->T</td>
<td>Nonsense</td>
<td>۱۳۹۶</td>
<td>۴۳۰۲</td>
<td>۱۲</td>
</tr>
<tr>
<td>۲۵</td>
<td>Japan</td>
<td>۱/۳۰</td>
<td>Polymorphism</td>
<td>Missense</td>
<td>۱۴۲۱</td>
<td>۴۴۱۰</td>
<td>۱۲</td>
</tr>
</tbody>
</table>

کشورها انجام شده است. همان‌طور که مشاهده می‌شود در کشورهای زبان، آمریکا، کانادا، فرانسه، ایتالیا و انگلیس افرادی به جهش در اگزون‌های ۱۰ و ۱۲ بازیابی است. در جدول فقط یک جهش در اگزون ۱۰ اگزون شده است. این حاکم روی این سه اگزون در خانواده‌های ایرانی قرار می‌گیرد. نتایج این مطالعه نشان داد که در این گروه از آزمایش‌های شوندگان، نیز مانند دیگر کشورها شیوع جهش در اگزون‌های ۱۰ و ۱۲ باعث نیست.

تشکر و فدودانی

از آقایان دکتر مرتضی هاشمی‌زاده، دکتر سیروس عظیمی، سیدمهدی حسینی اصل مجد خیراللهی و رضا مرفی‌خانی به خاطر مساعدت و همکاری‌های شایسته خدمت‌های تنظیمی در بدست‌آوردن آزمایش‌ها تشکر می‌گردد. از مسئولان آزمایشگاه‌های مربوطه به نهاد دانشگاه علوم پزشکی تهران و آزمایش‌های سرطان فرانسه نیز به خاطر همکاری‌هایی مثبت تشکر می‌کنیم.

1 - Sequencing analysis
2 - Nonsense
3 - Hotspot

