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Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disorder with a 

multifactorial etiology. It imposes a substantial economic and emotional 

burden on individuals and societies. Current data indicate that AD 

affects approximately 6.9 million individuals in developed countries, 

such as the United States, and this number is projected to rise to 13.8 

million by 2060 (1).  

Alzheimer’s disease is considered an irreversible brain disorder 

involving various pathophysiological pathways, including amyloid-beta 

(Aβ) accumulation, neurotrophin deficiency, and oxidative stress 

imbalance (2). It is believed that in AD, increased levels of reactive 

oxygen species (ROS), resulting from mitochondrial dysfunction and 

Aβ fibrillation in the dentate gyrus, lead to damage to neuronal lipids, 

proteins, and deoxyribonucleic acid (DNA), ultimately causing neuronal 

death (3). Although the antioxidant defense system is normally 

responsible for neutralizing free radicals, in oxidative stress-related 

disorders, such as AD, this system becomes impaired. Deficiencies in 

key antioxidant enzymes, including superoxide dismutase (SOD), 

glutathione peroxidase (GPx), and catalase (CAT), render the system 

ineffective against ROS. This imbalance results in cellular damage and 

contributes to memory impairment (4). 

As the prevalence of AD and its associated mortality continues to 

rise, increasing attention has been directed toward identifying non-

invasive therapeutic strategies. According to recent studies, regular 

physical activity has been recognized as a potential therapeutic approach 

to enhance cognitive function in aging populations and in 

neurodegenerative conditions (5,6). Physical exercise has also been 

shown to improve motor function in AD models (7) and promote the 

expression of certain neurotrophins (8). Previous studies have reported 

increases in SOD activity and improvements in short-, mid-, and long-

term memory following high-intensity interval and endurance training 

in rats. However, no significant changes were observed in GPx and CAT 

levels (9). In contrast, another study reported enhanced SOD and GPx 

activity, reduced malondialdehyde (MDA) levels, and improved 
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cognitive performance in a neurotoxic model induced by stanozolol 

(10). These inconsistencies, particularly regarding the differential 

impact of exercise intensity, duration, and neurotoxic model, suggest 

that the effects of physical activity on the brain’s oxidant-antioxidant 

system remain incompletely understood. Moreover, it is unclear whether 

exercise-induced antioxidant changes are consistent in different 

neurodegenerative models or influenced by specific neurotoxins, such 

as trimethyltin (TMT) or stanozolol. The aforementioned gaps warrant 

further investigation. 

Given the global trend of population aging and the increasing 

incidence of neurological disorders, along with the side effects 

associated with synthetic drugs, researchers have suggested that certain 

herbal and antioxidant compounds might exert beneficial effects in the 

management of neurodegenerative diseases. One such medicinal plant 

is saffron, scientifically known as Crocus sativus L. (11). This plant 

contains a variety of bioactive constituents, including isoflavones, 

flavonoids, triterpenoids, quinones, phenolic acids, crocetin, crocin, 

safranal, and picrocrocin. Among the mentioned constituents, crocin is 

one of the most potent and biologically active antioxidant compounds 

in saffron. Due to its unique chemical structure, crocin is believed to 

reduce inflammatory markers, such as tumor necrosis factor-alpha 

(TNF-α), interleukin-6 (IL-6), and IL-1β. Moreover, it might stimulate 

the transcription of antioxidant enzymes through pathways involving 

phosphoinositide 3-kinase (PI3K) and Akt signaling (12). The available 

evidence suggests that both saffron and crocin have favorable effects on 

cognitive performance. Saffron, in particular, has demonstrated the 

ability to neutralize Aβ accumulation, enhance acetylcholine function, 

and promote mitochondrial biogenesis in neurons (13).  

Trimethyltin is a potent neurotoxic organotin compound that 

selectively targets the hippocampus, inducing oxidative stress, 

mitochondrial dysfunction, and neuronal apoptosis. Experimental 

studies have shown that TMT exposure leads to elevated levels of ROS, 

MDA, and nitric oxide, along with decreased antioxidant enzyme 

activity (e.g., SOD, GPx, and CAT) in the hippocampal tissue, closely 

mimicking the oxidative imbalance observed in human AD (14-16). 

These molecular alterations are accompanied by behavioral deficits, 

such as memory impairment, hyperactivity, and seizures, further 

validating TMT as a reliable model for Alzheimer-like 

neurodegeneration. Therefore, the use of TMT in the present study 

provides a mechanistically relevant platform for evaluating antioxidant 

interventions. 

Despite previous investigations, most studies have examined saffron 

or crocin in isolation, without evaluating their interaction with physical 

exercise. Furthermore, it remains unclear whether crocin’s molecular 

effects, such as PI3K/Akt activation, translate into additive or 

synergistic antioxidant responses when combined with endurance 

training. The recent evidence suggests that combining endurance 

training with antioxidant supplementation might produce synergistic 

effects on neuroprotective signaling pathways in Alzheimer’s models, 

surpassing the benefits of either intervention alone (17). It remains 

unclear whether the effects of saffron and crocin on the nervous system 

are distinct or overlapping (11). Given the limited data on the individual 

and combined effects of exercise, saffron, and crocin on the brain’s 

oxidant-antioxidant system, clarifying whether these interventions act 

independently, redundantly, or synergistically is essential for optimizing 

non-pharmacological strategies in AD management. Moreover, due to 

the growing prevalence of AD and the pressing need for simple, cost-

effective therapeutic approaches, fundamental research, such as the 

present study, is both timely and necessary. Therefore, the current study 

aimed to investigate the changes in oxidant-antioxidant biomarkers in 

the hippocampal tissue of TMT-induced Alzheimer’s rats following 

endurance training, saffron administration, and crocin supplementation. 

 
Methods 

Animal subjects 

The present experimental study was conducted on a total of 49 male 

Sprague-Dawley rats with an average age of 8 weeks and a mean body 

weight of 220 ± 30.6 g provided from the Laboratory Animal Breeding 

Center of Islamic Azad University, Marvdasht Branch, Marvdasht, Iran. 

Upon arrival at the Exercise Physiology Laboratory of the university, 

the animals were housed in transparent, autoclavable polycarbonate 

cages (Five rats per cage) and acclimated to laboratory conditions for 

one week. The animal facility was maintained at an optimal ambient 

temperature of 22-24°C with relative humidity levels ranging from 55% 

to 65%. A 12-hour light/dark cycle was strictly regulated using an 

electronic light controller. The animals had ad libitum access to standard 

chow and water throughout the study. All procedures involving animals 

were approved by the Ethics Committee of Islamic Azad University, Lar 

Branch, Fars, Iran, and conducted in accordance with the ethical 

guidelines of Shiraz University of Medical Sciences, Shiraz, Iran (Ethics 

code: IR.SUMS.REC.1396.446). 

Induction of Alzheimer’s disease and group assignment 

On the eighth day of the study, 42 out of the 49 rats received an 

intraperitoneal (IP) injection of trimethyltin chloride (TMT; 8 mg/kg; 

Sigma-Aldrich, Germany), a neurotoxic agent used to induce 

Alzheimer-like pathology (18). After 24 hours, the animals were 

observed for behavioral signs indicative of Alzheimer’s induction. As 

previously reported, the administration of TMT is associated with 

distinct clinical symptoms in rats, including muscular tremors, 

hyperthermia, ocular and nasal hemorrhage, nausea, seizures, and tail 

twisting behavior. Following the confirmation of neurotoxic symptoms, 

the 42 TMT-treated rats were randomly assigned to six experimental 

groups (n = 7 per group): Alzheimer’s control (AD), Saffron 

supplementation (S), Crocin supplementation (Cr), Endurance training 

(ET), Endurance training + saffron (ET+S), and Endurance training + 

crocin (ET+Cr). To assess the effects of disease induction on the 

research variables, the remaining 7 rats were assigned to a healthy 

control group (HC) and did not receive TMT. 

Endurance training protocol 

To initiate endurance training, all rats first underwent a one-week 

habituation phase using a five-lane motorized treadmill (Danesh Salar 

Iranian Co., Iran), during which they ran at a speed of 8 m/min for 5 

minutes per day. Following habituation, the main training protocol was 

implemented over a period of eight weeks. During the first and second 

weeks, the rats ran on the treadmill three days per week at a speed of 15 

m/min for 15 minutes per session. During the third and fourth weeks, 

the training duration and the speed were increased to 20 minutes and 17 

m/min, respectively. During the fifth and sixth weeks, the rats exercised 

for 25 minutes at a speed of 19 m/min. Finally, during the seventh and 

eighth weeks, the training sessions lasted 30 minutes with a running 

speed of 20 m/min. Additionally, to ensure proper warm-up and cool-

down, each session began and ended with 5 minutes of running at a 

speed of 8 m/min (8).  

Saffron and crocin supplementation 

The crocin supplement used in this study was purchased from Sigma-

Aldrich (Germany, product code: 17304). Each day, 75 mg of crocin was 

dissolved in 4.2 cc of normal saline; subsequently, 0.3 cc of the prepared 

solution was intraperitoneally injected into each rat, corresponding to a 

dosage of 25 mg/kg per day. Similarly, for saffron extract preparation, 

75 mg of saffron was ground into fine powder using a mortar and pestle 

each day. The powder was then dissolved in 4.2 cc of normal saline, and 

0.3 cc of the resulting solution was intraperitoneally administered to 

each rat at a daily dose of 25 mg/kg (11). All injections were performed 

once daily at 2:00 p.m., approximately two hours after the completion 

of the exercise sessions, which were conducted from 9:00 to 10:00 a.m. 

Supplement administration was carried out every day throughout the 

intervention period to ensure consistent exposure. 

Tissue dissection and sampling 

Forty-eight hours after the final exercise session, all animals were 

anesthetized using an intraperitoneal injection of a ketamine-xylazine 

mixture (3:5 ratio). Upon achieving deep anesthesia and confirming the 

absence of pain reflexes, the skull was surgically opened, and the 

hippocampal tissue was carefully excised by a specialist. The harvested 

hippocampi were immediately stored at -80°C for subsequent 

biochemical analyses. All procedures were conducted in the Animal 

Laboratory of Islamic Azad University, Marvdasht Branch. 

Biochemical measurements 

The hippocampal concentrations of SOD and MDA were quantified 

using enzyme-linked immunosorbent assay (ELISA) kits, both 

manufactured by Navand Bio Lab (Iran). Total antioxidant capacity 

(TAC) was measured using a commercially available kit from ZellBio 

(Germany; Catalog No.: ZB-TAC-96A). 
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Statistical analysis 

Descriptive statistics were reported as mean ± standard deviation (SD). 

The Shapiro-Wilk test was used to assess the normality of data 

distribution. One-way analysis of variance (ANOVA) was employed to 

determine differences among the experimental groups. Tukey’s post hoc 

test was applied to identify the specific group differences. All statistical 

analyses were performed using SPSS software (Version 22). Statistical 

significance level was 0.05. 
 

Results 

Table 1 shows the mean and standard deviation of the study variables in 

the different groups. Statistical comparisons among groups were drawn 

using one-way ANOVA followed by Tukey’s post hoc test.  

 
The results of SOD analysis are presented in Figure 1. A significant 

difference was observed among groups (F = 31.90, P-Value < 0.001, 

partial η² = 0.920). The AD group showed significantly lower SOD 

levels than the HC group (P-Value < 0.001, Cohen’s d = 12.03). All 

intervention groups (i.e., ET, S, Cr, ET+S, and ET+Cr) exhibited 

significantly higher SOD levels, compared to the AD group (P-Value < 

0.001), with large effect sizes (Cohen’s d range: 5.03-6.00). No 

significant differences were observed among the intervention groups or 

between them and the HC group. The Alzheimer’s disease (AD) group 

showed markedly reduced SOD activity, compared to the healthy 

control (HC). Endurance training (ET), saffron (S), crocin (Cr), and their 

combinations (ET+S and ET+Cr) increased SOD levels, compared to 

the AD group. The data are expressed as mean ± standard error of the 

mean (SEM). 
 

 
As shown in Figure 2, MDA levels differed significantly among 

groups (F = 15.77, P-Value < 0.001, partial η² = 0.844). The AD group 

had significantly higher MDA levels than the HC group (P-Value < 

0.001, Cohen’s d = 4.89), whereas all intervention groups showed 

significantly reduced levels, compared to the AD group (P-Value < 

0.001), with large effect sizes (Cohen’s d range: 2.48-5.00). No 

significant differences were observed among the intervention groups or 

between them and HC. The Alzheimer’s disease (AD) group showed 

markedly higher MDA levels, compared to the healthy control (HC) 

group. Endurance training (ET), saffron (S), crocin (Cr), and their 

combinations (ET+S and ET+Cr) significantly reduced MDA 

concentrations relative to the AD group, indicating improved oxidative 

balance. The data are expressed as mean ± standard error of the mean 

(SEM). 

 
The results of TAC analysis are presented in Figure 3. A significant 

difference was noticed among the groups (F = 70.72, P-Value < 0.001, 

partial η² = 0.934). The TAC levels in the AD group were significantly 

lower than those in the HC group (P-Value < 0.001, Cohen’s d = 28.78), 

whereas all intervention groups showed significantly higher levels than 

the AD group (P-Value < 0.001), with very large effect sizes (Cohen’s d 

range: 7.94-34.42). Among the interventions, ET showed higher TAC 

than Cr (P = 0.018), and ET+S had significantly higher TAC than ET (P-

Value = 0.004). Additionally, ET+S and ET+Cr had significantly higher 

TAC than S and Cr (P-Value < 0.001), and ET+S had higher TAC than 

S (P-Value = 0.02). The Alzheimer’s disease (AD) group exhibited a 

pronounced reduction in TAC, compared to the healthy control (HC) 

group. Endurance training (ET), saffron (S), crocin (Cr), and their 

combined treatments (ET+S and ET+Cr) significantly elevated TAC 

levels relative to the AD group. Moreover, the combined interventions 

(ET+S and ET+Cr) showed greater improvements, compared to saffron 

and crocin alone. The data are presented as mean ± standard error of the 

mean (SEM). 
 

 

Discussion 

Overview of oxidative stress in Alzheimer’s disease 

The present study aimed to investigate changes in the oxidant-

antioxidant system in the hippocampal tissue of rats with AD induced 

by TMT, following eight weeks of endurance training combined with 

saffron and crocin supplementation. The results showed that 

Alzheimer’s induction caused a significant decrease in SOD and TAC 

levels in the diseased group, compared to the healthy control group, 

whereas the MDA level increased significantly.  

Table 1. Mean ± SD of hippocampal SOD, MDA, and TAC levels in 

experimental groups 

Groups MAD (nmol/mg) SOD (IU/mg) TAC (Micromolar) 

HC 0.292 ± 0.06 0.84 ± 0.07 1.37 ± 0.04 

AD 0.66 ± 0.091 0.14 ± 0.017 0.34 ± 0.031 

ET 0.43 ± 0.06 0.41 ± 0.06 1.20 ± 0.15 

S 0.42 ± 0.05 0.50 ± 0.07 1.09 ± 0.05 

Cr 0.39 ± 0.027 0.43 ± 0.07 0.97 ± 0.05 

ET+S 0.29 ± 0.029 0.48 ± 0.08 1.48 ± 0.12 

ET+Cr 0.38 ± 0.03 0.50 ± 0.048 1.39 ± 0.03 

Abbreviations: MDA, Malondialdehyde; SOD, Superoxide Dismutase; TAC, 

Total Antioxidant Capacity 

 

Figure 1. Superoxide Dismutase (SOD) levels in the hippocampal tissue of 
rats in the studied groups  
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Figure 2. Malondialdehyde (MDA) levels in the hippocampal tissue of rats 

in the studied groups 
*** Significantly different from the healthy control group (P-Value ≤ 0.001)  
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Figure 3. Total Antioxidant Capacity (TAC) levels in the hippocampal tissue 

of rats in the studied groups  

* Significantly different from the HC group (P-Value ≤ 0.001)  
† Significantly different from the AD group (P-Value ≤ 0.001)  
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Studies have demonstrated that although the mechanism of AD 

development is very complex, there is a close association between 

oxidative stress and the progression of AD (19,20). Since brain tissue is 

rich in lipids, it is more vulnerable to oxidative stress (19), and it has 

been shown that the hippocampus and cerebral cortex endure the highest 

levels of oxidative stress in AD (20). Although ROS plays a role in 

cellular signaling and defense against invading microorganisms, 

excessive ROS production damages cellular macromolecules, leading to 

apoptosis and cell death (21). Studies on mice with SOD knockout have 

shown that increased oxidative stress in the brain, particularly in the 

hippocampus, is associated with cognitive decline similar to that 

observed in aged mice. Similarly, the evidence has shown a reduction in 

endogenous antioxidant enzyme levels in the brains of preclinical 

animal models of AD, as well as in patients with AD (22). In oxidative 

stress-related diseases, including AD, the antioxidant system fails to 

compete with ROS due to defects in its own enzymes, such as SOD, 

GPx, and CAT. This failure leads to cellular damage and ultimately 

results in memory impairment (4). 

Effects of endurance training 

The results of the present study showed that endurance training 

increased SOD and TAC levels and decreased MDA levels in the 

hippocampal tissue of AD-afflicted rats. Researchers believe that the 

main mechanism by which exercise enhances antioxidant transcription 

is dependent on the activation of the nuclear factor erythroid-related 

factor 2 (NRF2). Specifically, in response to physical activity and 

increased ROS, NRF2 translocates to the nucleus and interacts more 

with the antioxidant response element (ARE). In other words, during 

exercise, the initial increase in PI3K leads to phosphorylation of NRF2, 

which causes the release of Keap1 from this protein. Subsequently, 

NRF2 binds more easily to its active site on DNA near the ARE. The 

NRF2/ARE complex then activates phase II gene expression, which is 

related to the transcription of antioxidant enzymes, such as SOD, GPx, 

and CAT (23).  

Consistent with the present study, researchers showed that exercise 

increases SOD, brain-derived neurotrophic factor (BDNF), vascular 

endothelial growth factor (VEGF), SIRT-1, and SIRT-3 in elderly 

women (24). Moreover, another study reported increased levels of Nrf2, 

SOD, and CAT in the hippocampus of AD rats induced by TMT 

following endurance training (25). In a different study, acute exercise on 

a treadmill elevated heat shock protein 72 (HSP-70) and TAC in the 

hippocampus of rats (26). Additionally, Abdi et al. showed that 

endurance training increased Nrf2, glutathione (GSH), and heme 

oxygenase-1 (HO-1) in the hippocampal tissue of AD rats (27). 

Although some studies have reported variable effects depending on 

exercise type and duration, the current study’s use of an eight-week 

endurance protocol might have provided sufficient stimulus to activate 

sustained antioxidant responses. This issue might explain the 

consistency of the findings of the current study with NRF2-related 

outcomes in long-term models. Therefore, most studies indicate a 

positive effect of long-term exercise on the antioxidant system in 

neurological disorders, and the current study supports these findings. 

Effects of saffron and crocin supplementation 

The results of the present study showed that consumption of saffron and 

crocin increased SOD and TAC levels and decreased MDA levels in the 

hippocampal tissue of AD rats. Regarding saffron, studies have shown 

that this antioxidant herb can directly reduce ROS, leading to a decrease 

in lipid peroxidation and its marker MDA. Additionally, saffron reduces 

brain damage by affecting Aβ and the oxidative stress caused by it in the 

hippocampal tissue (28). It is also believed that saffron, due to its 

phenolic compounds, can enhance the non-enzymatic antioxidant 

system and ultimately improve TAC (29). Moreover, saffron’s 

antioxidant properties might inhibit nuclear factor kappa-B (NF-κB) 

transcription factor, suppress the MAPK/JNK pathway, and inhibit 

cyclooxygenases and metalloproteinases in the central nervous system, 

thereby halting the process of inflammation and oxidation (13).  

One study demonstrated that saffron consumption increased GSH 

and TAC and decreased MDA in the brain tissue of stroke-induced rats 

(30). Furthermore, crocin is reported to be a strong free radical 

scavenger that enhances enzymatic and non-enzymatic antioxidant 

capacity. Crocin intake is associated with increased transcription of 

antioxidants, such as SOD and GPx, and decreased MDA (31). Crocin 

also strengthens glutathione, ascorbic acid, and bilirubin, and ultimately 

enhances the antioxidant system by reducing pro-inflammatory factors 

and cyclooxygenase-2. In other words, crocin activates the CAMK4-

PI3K/Akt-Nrf2 pathway and participates in the transcription of 

antioxidant enzymes through this pathway (32).  

Supporting the above-mentioned finding, a review study showed 

that crocin activates AMP-activated protein kinase (AMPK) signaling, 

which subsequently improves mitochondrial biogenesis and increases 

antioxidant capacity (33). However, another study reported that 

following crocin administration, SOD, GPx, and MDA levels in the 

brain tissue of experimental autoimmune encephalomyelitis rats 

decreased (32). The discrepancy in results might be due to differences 

in sample populations and measurement methods. Specifically, the type 

of animal model (i.e., autoimmune encephalomyelitis vs. TMT-induced 

AD), the dosage and duration of crocin administration, and the timing 

of tissue sampling might influence outcomes. The present study used a 

well-established TMT-induced AD model and an eight-week 

intervention protocol, which might account for the more consistent 

antioxidant improvements observed. Based on the aforementioned 

findings, it appears that saffron, due to other compounds like safranal 

and quercetin, might have a greater effect on activating the non-

enzymatic antioxidant system, whereas crocin directly activates the 

CAMK4-PI3K/Akt-Nrf2 pathway. 

Combined effects of exercise and supplementation 

The results also showed that the combined consumption of saffron and 

crocin, along with endurance training, significantly increased SOD and 

TAC levels and decreased MDA levels in the hippocampal tissue of rats 

with AD. Moreover, TAC levels in the exercise group were significantly 

higher than in the crocin group, and TAC in the exercise plus saffron 

group was significantly higher than in the exercise-only group. 

Additionally, the combined saffron and crocin consumption with the 

endurance training group showed significantly higher TAC levels, 

compared to the saffron-only and crocin-only groups. It appears that 

exercise activates the PI3K/NRF2/ARE pathway, leading to the 

transcription of SOD, GPx, and CAT (33), whereas saffron reduces Aβ 

directly, lipid peroxidation, and strengthens the non-enzymatic 

antioxidant system (29). Saffron also inhibits NF-κB, the MAPK/JNK 

pathway, cyclooxygenases, and metalloproteinases in the central 

nervous system, preventing inflammation and oxidative stress (30). The 

main mechanism of crocin is the activation of the CAMK4-PI3K/Akt-

Nrf2 pathway (31). Therefore, although the aforementioned 

interventions do not always act through identical pathways, they 

ultimately enhance each other’s effects on strengthening the antioxidant 

system.  

Consistent with the current study’s findings, TAC levels in the 

crocin plus exercise and saffron plus exercise groups were significantly 

higher than those in other groups alone. Supporting this finding, one 

study showed that acute exercise increased MDA in the premotor cortex 

of the brain; nevertheless, the combination of exercise and aqueous 

saffron stigma extract decreased MDA levels in this brain region (28). 

Another meta-analysis demonstrated that saffron extract consumption 

increased CAT and SOD, with antioxidant improvements in 

supplemented groups being more prominent than in exercise groups 

(13). Additionally, a study showed that the administration of 50 and 100 

mg/kg crocin increased SOD and GPx and reduced MDA following a 

fatiguing exercise session in aged rats (31).  

Limitations and future directions 

Given the role of exercise, crocin, and saffron in upstream signaling 

pathways regulating the transcription of antioxidant enzymes, the lack 

of direct evaluation of these molecular mechanisms represents a major 

limitation of the present study. Without assessing key regulators, such 

as NRF2, PI3K, or CAMK4, the study cannot fully elucidate the 

mechanistic basis of the observed antioxidant effects. Additionally, 

although saffron contains other bioactive compounds, such as crocetin 

and safranal, their effects were not investigated, which further limits the 

comprehensiveness of the findings. The aforementioned omissions 

restrict the study’s potential to provide a complete picture of the 

involved molecular interactions. Although behavioral symptoms were 

used to confirm AD induction, the absence of pre-intervention cognitive 

assessments, such as the Morris Water Maze, also limits the precision of 

baseline characterization. Future studies should address the 

aforementioned critical gaps to strengthen mechanistic interpretation 

and translational relevance. 
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Conclusion 

Based on the obtained results, exercise, crocin, saffron, and their 

combination improve antioxidant system function. However, the 

combination of exercise with crocin and exercise with saffron has a 

considerably more favorable effect on the antioxidant capacity in the 

hippocampal tissue of AD models. 
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