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Introduction 

The increasing prevalence of microbial contamination in food products 

has become a critical concern in both developed and developing 

countries, driving global efforts to identify natural and effective 

alternatives to synthetic preservatives. While conventional 

antimicrobial agents are widely employed in food systems, their use is 

often associated with health risks, environmental concerns, and the 

emergence of resistant microbial strains, challenges that have prompted 

the food industry to explore more sustainable and consumer-friendly 

solutions (1,2). In this context, plant-derived antimicrobials have 

attracted significant attention due to their broad-spectrum activity, low 

toxicity, biodegradability, and alignment with consumer demand for 

“clean-label” products that minimize artificial additives (3). Higher 

plants are recognized as rich sources of bioactive secondary metabolites, 

many of which exhibit antimicrobial, antioxidant, anti-inflammatory, 

and immunomodulatory properties (4). Among these phytochemicals, 

compounds such as phenolic acids, flavonoids, alkaloids, and essential 

oils (EOs) are known to exert antimicrobial effects through mechanisms 

including membrane disruption, enzyme inhibition, interference with 

nucleic acid synthesis, and quorum sensing modulation (5). Two 

botanicals of particular interest in this regard are Malva spp. (Mallow) 

and Urtica dioica (Stinging nettle). Malva has traditionally been used 
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for its soothing, emollient, and anti-inflammatory properties, and its 

phytochemical profile includes abundant polysaccharides, flavonoids, 

and phenolic compounds with demonstrated antimicrobial potential. 

Previous studies have reported inhibitory effects of Malva extracts, 

especially against Gram-positive bacteria such as Staphylococcus 

aureus and Bacillus subtilis, supporting its possible use as a natural 

preservative in food systems (6). However, extracts and essential oils 

differ substantially in their chemical composition extracts are rich in 

non-volatile compounds such as polysaccharides, whereas essential oils 

contain volatile constituents with distinct antimicrobial mechanisms. 

This novelty underscores the importance of evaluating Malva essential 

oil specifically, as its biological activity may differ considerably from 

that of solvent-based extracts. Likewise, Urtica dioica has been widely 

studied for its nutritional and medicinal applications, and contains 

several bioactive constituents, such as caffeic acid, chlorogenic acid, 

quercetin derivatives, and lectins, with antioxidant, anti-inflammatory, 

and antimicrobial activities (7). Nevertheless, these compounds are 

generally associated with extracts rather than essential oils, as nettle is 

not traditionally considered an aromatic plant with high essential oil 

yield. Therefore, assessing Urtica essential oil represents a less-explored 

and potentially novel approach, albeit requiring careful justification of 

its expected activity. Despite these promising findings from extracts, the 

antimicrobial activity of Malva and Urtica essential oils has not been 

systematically compared under standardized in vitro conditions, 

particularly against a broad range of foodborne bacteria. Moreover, 

inconsistencies in plant origin, extraction techniques, solvent systems, 

and assay protocols across previous studies have contributed to variable 

results and limited reproducibility. Importantly, while individual 

evaluations are necessary, the rationale for testing their 1:1 (v/v) 

combination lies in the potential for synergistic or additive interactions 

between their volatile constituents, a hypothesis supported by previous 

reports of enhanced efficacy in combined essential oils. The present 

study aims to address this need by systematically evaluating the in vitro 

antibacterial properties of essential oils derived from Malva spp. and 

Urtica dioica, as well as their 1:1 (v/v) combination, against a panel of 

ten foodborne bacterial species: Pseudomonas aeruginosa, 

Streptococcus pyogenes, Alcaligenes faecalis, Serratia marcescens, 

Salmonella enteritidis, Staphylococcus aureus, Shigella dysenteriae, 

Listeria monocytogenes, Klebsiella pneumonia and Escherichia coli. 

Antimicrobial efficacy was assessed using standardized methods, 

including agar disk diffusion, minimum inhibitory concentration (MIC), 

and minimum bactericidal concentration (MBC) assays. The outcomes 

aim to support the development of natural, plant-based antimicrobial 

agents for use in food preservation applications, and to contribute to the 

broader understanding of phytochemicals as functional ingredients in 

food safety management (8). 
 

Methods 

Plant material and extract preparation 

Mallow and Nettle plants were sourced and taxonomically verified by 

agricultural experts, with herbarium reference numbers recorded. 

Essential oils (EOs) were obtained by hydrodistillation using a 

Clevenger-type apparatus for 3 h, a method widely applied for extracting 

volatile fractions. Oils were dried over anhydrous sodium sulfate, stored 

in sterile, amber vials at 4 °C, and used within 14 days. Prior to assays, 

each EO was dissolved in 10% (v/v) DMSO and filter-sterilized (0.22 

µm) (9). 

Bacterial strains and preparation 

Bacterial strains relevant to food spoilage and human infection were 

obtained from accredited repositories (ATCC and the Iranian Research 

Organization for Science and Technology, IROST). The panel 

comprised Pseudomonas aeruginosa (ATCC 27853), Streptococcus 

pyogenes (ATCC 19615), Alcaligenes faecalis (ATCC 8750), Serratia 

marcescens (ATCC 13880), Salmonella enteritidis (ATCC 13076), 

Staphylococcus aureus (ATCC 25923), Shigella dysenteriae (ATCC 

13313), Listeria monocytogenes (ATCC 19115), Klebsiella pneumoniae 

(ATCC 13883) and Escherichia coli (ATCC 25922). Each strain was 

streak-cultured on its recommended agar medium and incubated for 24 

h at 37 °C. A single colony was transferred to 10 mL of the 

corresponding broth and grown for 18 h (37 °C, 120 rpm).  Bacterial 

suspensions were standardized to an approximate concentration of 10⁶ 

CFU/mL by measuring optical density at 600 nm using a UV-Vis 

spectrophotometer (UV-1800, Shimadzu, Japan). This uniform 

inoculum was employed in all subsequent experimental procedures. 

Antibacterial assays 

Antibacterial activity was assessed using two complementary methods: 

broth microdilution (To determine MIC and MBC) and the agar disk 

diffusion assay. 

Microdilution method (MIC and MBC) 

Serial two-fold dilutions of each extract (10,000 to 312.5 µg mL⁻¹ in 

BHI broth; final DMSO ≤ 1 %) were prepared in 96-well microplates 

(160 µL broth + 20 µL inoculum + 20 µL extract). Plates were shaken 

for 30 s, incubated 24 h at 37 °C, and viability assessed with 0.01 % 

(w/v) resazurin. The MIC was defined as the lowest concentration 

preventing the resazurin color change. For MBC, 10 µL from each clear 

well were streaked on nutrient agar and incubated 24 h; the MBC 

corresponded to the lowest extract concentration yielding no growth. A 

soluble gentamicin sulfate standard (0.5-64 µg/mL) was used as the 

positive control, tested in the same microdilution format to ensure 

quantitative comparability across bacterial species (10). 

Agar disk-diffusion method 

Following the Clinical and Laboratory Standards Institute (CLSI) 

guidelines, bacterial suspensions were uniformly spread on Mueller-

Hinton agar plates using sterile swabs. Sterile 6 mm paper disks (Oxoid, 

UK) were impregnated with 10 µL EO at 200 mg/mL (A concentration 

selected based on preliminary trials that ensured measurable yet non-

saturating inhibition zones) and placed onto the inoculated agar surface. 

As positive control, a soluble gentamicin solution (10 µg/mL) was 

applied to sterile disks, ensuring methodological consistency with broth 

assays. Disks 10% DMSO functioned as negative controls. Plates were 

incubated at 37 °C for 24 h, and the diameters of the inhibition zones (In 

mm) were measured using digital calipers (Mitutoyo, Japan) (11). The 

cutoff values for interpreting inhibition zones were guided by CLSI 

standards and previous EO studies to ensure reproducibility. 

Statistical 

Data obtained from antibacterial assays were statistically evaluated with 

SPSS (IBM Corp., USA) to investigate the significance of the essential 

oils' antibacterial activity against various strains. Normal distribution of 

the data was verified using the Kolmogorov-Smirnov test, and 

homogeneity of variance was assessed through Levene's test. When 

these assumptions were satisfied, statistical differences among groups 

were identified by one-way ANOVA with Tukey’s post hoc test. If 

assumptions were violated, the non-parametric Kruskal-Wallis test with 

Dunn’s post hoc correction was applied. Statistical significance level 

was 0.05. The findings represented as mean ± SD from three replicates 

(n = 3). 
 

Results 

MIC and MBC 

The MIC and MBC values of Urtica dioica essential oil (NEO), Malva 

spp. essential oil (MEO), and their 1:1 (v/v) combination were 

determined against ten bacterial strains using the broth microdilution 

method. The results are summarized in Table 1. Overall, NEO exhibited 

the strongest antibacterial activity, with MIC values as low as 1,250 

µg/mL against A. faecalis, S. aureus, and L. monocytogenes, and 

corresponding MBC values of 2,500, 2,500, and 1,250 µg/mL, 

respectively. The identical MIC and MBC values for L. monocytogenes 

indicate a strong bactericidal effect. In contrast, MEO required higher 

concentrations (2,500-10,000 µg/mL) to inhibit growth, though it 

retained bactericidal potential against P. aeruginosa and S. aureus 

(MBC/MIC ≤ 2). The 1:1 combination displayed MIC values 

comparable to NEO against highly susceptible strains. In some cases, 

such as K. pneumoniae, the mixture reduced the MBC compared to 

MEO alone. Statistical analysis revealed significant differences (P-

Value < 0.05) between NEO and MEO for S. aureus and L. 

monocytogenes. The combination was significantly different from MEO 

but not from NEO. However, across the full bacterial panel, no 

consistent trend of significant differences was observed. These findings 

suggest that the antibacterial effects are both descriptive and statistically 

robust. Importantly, some MIC values approached the activity level of 

gentamicin, indicating potential applications of these oils in food 

preservation as natural antimicrobial agents. 
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Agar disk diffusion assay 

The antimicrobial activity was further evaluated using the agar disk 

diffusion method, with soluble gentamicin sulfate included as the 

standard reference antibiotic. NEO produced the widest inhibition 

zones, including 11.68 ± 0.20 mm for L. monocytogenes and 11.60 ± 

0.20 mm for A. faecalis (Table 2). By comparison, gentamicin produced 

zones of 12.20 ± 0.12 mm and 12.33 ± 0.10 mm, respectively. MEO 

generated smaller zones overall, with its maximum effect against S. 

aureus (10.05 ± 0.15 mm, Table 2). The NEO-MEO blend achieved 

inhibition zones that were generally intermediate to or slightly larger 

than those of MEO alone, for example 11.42 ± 0.17 mm against S. 

aureus compared with 10.05 ± 0.15 mm for MEO (P-Value = 0.04, one-

way ANOVA with Tukey’s post hoc test). While the blend did not 

consistently outperform NEO, its activity was often enhanced relative to 

MEO. Statistical analysis (ANOVA with Tukey’s post hoc test) 

confirmed significant differences among treatments (P-Value = 0.03), as 

indicated by superscript letters. Gentamicin remained the most potent 

agent in all comparisons, yet the oils demonstrated reproducible 

antibacterial activity across both Gram-positive and Gram-negative 

strains. 
 

Discussion 

Antibacterial efficacy 

The present study demonstrated that Urtica dioica essential oil (NEO) 

exhibits superior antibacterial efficacy compared to Malva spp. essential 

oil (MEO) across most tested bacterial strains. This conclusion is 

supported by both the lower MIC/MBC values in the broth 

microdilution method and the reproducible results across triplicate 

experiments (n = 3). For example, the lowest MIC (1,250 µg/mL) 

recorded for L. monocytogenes with NEO corresponded exactly with the 

MBC (1,250 µg/mL), confirming a bactericidal effect against this high-

risk foodborne pathogen. This finding has practical importance, as it 

demonstrates that nettle EO can achieve complete killing of a clinically 

relevant organism at relatively low concentrations (12). The blended 

NEO-MEO formulation resulted in comparable or enhanced inhibition 

zones relative to the individual oils and, in some cases, approached the 

efficacy of Gentamicin. For example, against S. pyogenes and S. 

marcescens, the inhibition zones for the blend (10.60 mm and 9.60 mm, 

respectively) were relatively close to those of Gentamicin (14.20 mm 

and 14.43 mm, respectively). The practical significance of the 

combination lies in its ability to reduce the required MBC for certain 

pathogens compared to MEO alone, suggesting that combining essential 

oils could lower the concentrations needed for effectiveness in food 

preservation contexts (13). 

Effects of oil blending 

The combined oil formulation demonstrated antibacterial activity that 

was in several cases greater than MEO alone, but generally comparable 

to NEO. For example, against S. aureus, the blend achieved an MIC of 

2,500 µg/mL and an MBC of 2,500 µg/mL, which was significantly 

different from MEO (MIC 2,500 µg/mL; MBC 5,000 µg/mL, P-Value = 

0.04), but not significantly different from NEO (MIC 1,250 µg/mL; 

MBC 2,500 µg/mL). A similar trend was observed for K. pneumoniae, 

where the combination reduced the MBC compared to MEO (5,000 vs. 

10,000 µg/mL, P-Value = 0.03) (14,15). These results indicate that the 

Table 1. Antibacterial activity of nettle essential oil (NEO), mallow essential oil (MEO), and their 1:1 combination based on MIC and MBC values 

Bacterial strain MIC (NEO) MBC (NEO) MIC (MEO) MBC (MEO) MIC (NEO+MEO) MBC (NEO+MEO) 

S. enteritidis 5000 10000 10000 10000 5000 10000 

S. dysenteriae 5000 5000 5000 10000 5000 5000 

P. aeruginosa 2500 5000 5000 5000 2500 5000 

E. coli 5000 10000 10000 10000 5000 10000 

S. pyogenes 2500 2500 5000 5000 2500 5000 

S. marcescens 2500 2500 5000 5000 2500 2500 

K. pneumoniae 2500 5000 5000 10000 5000 5000 

A. faecalis 1250 2500 2500 5000 1250 2500 

S. aureus 1250 2500 2500 5000 2500 2500 

L. monocytogenes 1250 1250 2500 5000 1250 2500 

 
 

 

Table 2. Antibacterial activity of nettle essential oil (NEO), mallow essential oil (MEO), and their 1:1 combination in agar disk diffusion assay (Mean ± SD) 

Bacterial strain NEO (mm) MEO (mm) Blend (mm) Gentamicin (mm) 

S. enteritidis 8.60 ± 0.10 Aa 7.55 ± 0.17 Aa 8.60 ± 0.10 Aa 13.82 ± 0.17 Ab 

E. coli 8.70 ± 0.15 Aa 7.73 ± 0.20 Aa 8.70 ± 0.15 Aa 14.10 ± 0.15 Bb 

S. dysenteriae 8.82 ± 0.14 Aa 7.78 ± 0.10 Aa 8.82 ± 0.14 Aa 13.27 ± 0.27 Cb 

P. aeruginosa 9.50 ± 0.20 Ba 8.25 ± 0.14 Ba 9.50 ± 0.20 Ba 13.40 ± 0.40 Cb 

K. pneumoniae 9.53 ± 0.14 Ba 8.21 ± 0.15 Ba 9.53 ± 0.14 Ba 12.85 ± 0.10 Db 

S. marcescens 9.60 ± 0.17 Ba 8.45 ± 0.10 Ba 9.60 ± 0.17 Ba 14.43 ± 0.15 Eb 

S. pyogenes 10.60 ± 0.10 Ca 9.05 ± 0.14 Ca 10.60 ± 0.10 Ca 14.20 ± 0.20 Bb 

S. aureus 11.42 ± 0.17 Da 10.05 ± 0.15Da 11.42 ± 0.17 Da 12.42 ± 0.12 Fb 

A. faecalis 11.60 ± 0.20 Da 9.91 ± 0.14 Da 11.60 ± 0.20 Da 12.33 ± 0.10 Fb 

L. monocytogenes 11.68 ± 0.20 Da 8.85 ± 0.12 Ca 11.68 ± 0.20 Da 12.20 ± 0.12 Fb 

Different capital letters in each column indicate a statistically significant difference (P-Value < 0.05). 

Different small letters in each row indicate a statistically significant difference (P-Value < 0.05). 
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combination can enhance the antibacterial activity of the weaker oil 

(MEO), though its performance does not consistently exceed that of 

NEO (16). The observed effects are best described as additive or 

complementary rather than synergistic. The combination improved 

activity relative to MEO and, in selected cases, produced statistically 

significant differences, but it did not consistently outperform NEO.  

Application in food safety and preservation 

The inclusion of Gentamicin as a reference standard in the agar disk 

diffusion assay enabled a comparative benchmark to evaluate the 

performance of the essential oils. While Gentamicin produced 

consistently higher inhibition zones, the essential oils, especially NEO 

and the blended formulation, exhibited notable natural antimicrobial 

potential, with some inhibition zone diameters approaching those of the 

antibiotic standard. This is particularly important in the context of food 

safety, where natural antimicrobials are increasingly sought after as 

alternatives to synthetic preservatives. The oils demonstrated activity 

against key foodborne pathogens, including S. enteritidis, L. 

monocytogenes, and E. coli, which supports their potential for use in 

preservation strategies, especially for "clean-label" or organic food 

products (17). While Gentamicin remains more potent, the bactericidal 

nature of NEO and the synergistic enhancement seen in the blend offer 

practical benefits when antibiotic use is not permitted or must be 

minimized. Incorporating these essential oils into antimicrobial 

packaging, surface sanitizers, or edible coatings could contribute to 

improving food safety and extending shelf life, provided their sensory 

impacts and regulatory approvals are properly managed (18). 

Mechanistic considerations 

Although this study primarily focused on antimicrobial efficacy, the 

observed differential responses across bacterial strains suggest multiple 

potential mechanisms of action. The greater effectiveness of the oils 

against Gram-positive bacteria may be attributed to differences in cell 

wall structure and outer membrane permeability compared to Gram-

negative species. Additionally, the range of MIC/MBC ratios suggests 

that the oils may exhibit bacteriostatic activity against some pathogens 

and bactericidal effects against others (19). The antimicrobial activity is 

likely driven by bioactive constituents such as phenolics, flavonoids, 

and terpenoids, which are known to disrupt bacterial membranes, inhibit 

critical enzymes, or generate reactive oxygen species that damage 

cellular components. The complex, multi-compound composition of 

essential oils may contribute to broad-spectrum activity and reduced risk 

of resistance development compared to single-agent antibiotics (20,21). 

Study limitations and future directions 

The in vitro design of this study does not fully capture the complexity 

of clinical infections or food systems, limiting the direct translatability 

of the findings. Although the extraction method preserved thermolabile 

compounds, it may not have optimized the recovery of all bioactive 

constituents. Moreover, the 48-hour maceration period and solvent 

ratios employed may not reflect the most effective conditions for 

maximizing antimicrobial potency.  Future research should address these 

gaps. Isolation and characterization of individual active compounds 

would facilitate structure-activity relationship studies and may lead to 

the development of more potent synthetic analogs. In Vivo studies in 

appropriate animal models are essential to assess safety, 

pharmacokinetics, and therapeutic efficacy. Long-term studies 

evaluating resistance potential and the durability of antimicrobial effects 

are also needed to inform real-world applications. Mechanistic 

investigations using techniques such as electron microscopy, membrane 

integrity assays, and metabolomics could elucidate the specific cellular 

targets and pathways affected by these oils. Such insights would support 

the rational design of optimized formulations and may aid in identifying 

predictive biomarkers of antimicrobial responsiveness. 

 

Conclusion 

This study highlights the antibacterial potential of nettle (Urtica dioica) 

and mallow (Malva spp.) essential oils. Nettle oil exhibited the strongest 

overall activity, with particularly low MIC and MBC values against L. 

monocytogenes, S. aureus, and A. faecalis. Mallow oil was less potent 

but still showed measurable inhibitory effects. The combined 

formulation demonstrated additive or complementary effects, 

improving antibacterial performance relative to mallow oil alone and, in 

some cases, reducing MBC values. However, the combination did not 

consistently exceed the efficacy of nettle oil. These findings support the 

potential use of nettle and mallow essential oils as natural antimicrobial 

agents in food preservation strategies, including antimicrobial 

packaging, edible coatings, and surface sanitizers. Future work should 

include quantitative interaction analyses, such as checkerboard assays 

and FIC index calculations, to determine whether the observed effects 

represent true synergy or additive interactions, and to validate their 

applicability under real-world food system conditions. 
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