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Abstract Article Type: Research Article

Background: Stroke is a leading cause of disability and mortality worldwide, with ischemic strokes
comprising the majority of cases. Despite advances in neuroimaging, there is a pressing need for
supplementary diagnostic tools to enhance accuracy. This study explores the application of machine
learning (ML) techniques to predict ischemic stroke using RNA-seq data from the GEO database
(GSE22255).

Methods: We developed and evaluated various machine learning models, including Random Forest,
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K-Nearest Neighbors (KNN), and CHAID (Chi-squared Automatic Interaction Detection), based on
their accuracy, precision, specificity, and sensitivity. The analysis utilized a dataset comprising
54,676 genes across 40 samples (20 cases and 20 controls). All modeling was conducted using IBM
SPSS Modeler version 18.

Results: The models were assessed based on their classification accuracy, performance evaluation
scores, and AUC/Gini AUC metrics. The Random Forest model achieved the highest accuracy
(96.67% in training, 80% in testing), while the CHAID algorithm provided interpretable results with
key variables (TP53, CYP1Al, and CYP2D6) identified. The KNN model exhibited strong
performance with notable confidence in its predictions.
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Conclusion: This study demonstrates the potential of ML techniques, particularly Random Forest,
to enhance stroke diagnosis and provide insights into stroke pathology, offering a novel approach to
improving clinical decision-making. However, the study is limited by the small sample size, and
future work should focus on validation with larger datasets and integration with other omics data for
clinical application.

economic factors (2). Ischemic strokes, which occur when blood flow is
blocked by an occluded blood vessel, represent about 87% of cases (3).
Hemorrhagic strokes, resulting from the rupture or leakage of weakened
blood vessels in the brain, account for the remaining 13% (4). In high-
income countries, stroke incidence has declined due to improved
preventive measures and lifestyle changes, but an aging population is
expected to increase new cases, adding to the healthcare burden (5).
Given the severity and prevalence of strokes, there is growing interest
in using novel biomarkers as supplementary diagnostic tools to enhance
the accuracy of routine techniques (3). Current diagnostic tools,
primarily neuroimaging techniques, though essential, have limitations,
including high costs, limited availability, and delays in detection,
especially in the early stages of stroke (6). These limitations highlight
the importance of searching for novel biomarkers that can provide more
timely and accurate diagnoses, monitor disease severity, and assess
treatment efficacy (7). Recent advancements in genomics and
bioinformatics have led to the exploration of RNA-seq data as a
powerful tool for identifying such biomarkers, offering a molecular-
level understanding of stroke pathology that complements traditional
diagnostic methods. Unlike proteomics or metabolomics, which focus
on proteins and metabolites, RNA-seq provides a comprehensive view
of gene expression, allowing for the identification of differentially
expressed genes and pathways that may be involved in stroke pathology.

RNA-seq data analysis poses significant challenges, including
complex preprocessing steps such as quality control, alignment, and
normalization, all of which critically impact the results. The high
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What is current knowledge?

e  Stroke is a significant global health concern, with ischemic
strokes accounting for the majority of cases.

e  Neuroimaging techniques are the primary diagnostic tools, yet
supplementary methods are needed to enhance diagnostic
accuracy.

e  Machine learning techniques are increasingly being explored
in biomedical research for predictive modeling and disease
classification.

What is new here?

e RNA-seq data from ischemic stroke patients were utilized to
develop and evaluate machine learning models for stroke
classification.

e Among the evaluated models, Random Forest showed the
highest accuracy, while CHAID produced interpretable results
with key gene markers (TP53, CYP1A1, and CYP2D6).

e This study demonstrates the potential of machine learning
techniques not only to enhance diagnostic accuracy but also to
provide insights into ischemic stroke pathology, supporting
improved clinical decision-making.

Introduction

Stroke is a major cause of disability in adults and the second leading
cause of death worldwide, significantly impacting individuals and
healthcare systems (1). Over the past thirty years, the incidence and
prevalence of stroke have risen, influenced by demographic and

dimensionality of transcriptomic data, with thousands of genes across
limited samples, complicates feature selection and increases the risk of
overfitting, while large sequencing volumes demand scalable
computational resources. Machine learning (ML) offers solutions by
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automating preprocessing and improving reproducibility through
adaptive pipelines. Scalable ML frameworks enable efficient processing
of large datasets, and integrating ML enhances accuracy and biological
insight. Thus, ML addresses RNA-seq challenges by optimizing analysis
robustness and interpretability in transcriptomic studies.

Extensive studies on stroke utilize large datasets, offering valuable
insights into real-world practices and enabling population-based
analyses. However, these datasets often have limitations, including
potential inaccuracies in ICD-10 diagnostic codes, which may be
influenced by physician diagnostic precision and financial incentives
(3). Recently, artificial intelligence (AI) has gained significant
popularity, particularly in the fields of ML and deep learning (DL) (8).
Researchers have established and validated operational definitions of
stroke, developing algorithms to diagnose ischemic strokes using claims
data and multicenter registries. ML has become a powerful tool in stroke
research, enabling the classification of stroke types, prediction of
outcomes, and identification of subtypes (9). These techniques allow for
the analysis of large datasets, recognition of patterns, and enhancement
of diagnostic, treatment, and prognostic capabilities for stroke patients
(10,11).

Al particularly ML and DL, is crucial for stroke diagnosis due to its
ability to rapidly analyze complex medical data with high accuracy.
Unlike traditional methods, which rely on manual interpretation and can
be time-consuming, ML algorithms detect subtle patterns and early
indicators of stroke that may be missed by human clinicians. ML models
can also continuously learn from new data, enhancing their predictive
performance over time. These advantages lead to faster, more precise
diagnoses, ultimately improving patient outcomes and reducing
healthcare burdens.

Combining ML with RNA-seq revolutionizes stroke diagnosis by
detecting novel biomarkers and gene-expression patterns that traditional
methods may overlook. This data-driven approach enhances diagnostic
precision and provides real-time molecular insights for personalized
treatment. ML models uncover hidden transcriptomic signatures,
enabling early intervention and optimized therapies. By bridging
molecular biology and clinical practice, this synergy improves patient
outcomes. The research represents a major leap forward in precision
medicine for stroke care. This study aims to apply and validate a
machine learning-based predictive model for ischemic stroke using
RNA-seq data. By analyzing gene expression profiles from stroke
patients and healthy controls, and selecting significant genes, we seek
to improve stroke diagnosis accuracy and contribute to more effective
treatment strategies. Our work builds on previous research by leveraging
RNA-seq data, which provides a more comprehensive view of gene
expression compared to traditional methods, and by comparing multiple
machine learning models to identify the most effective approach for
stroke classification.

Methods
Data acquisition

We obtained RNA-seq data from the GEO database, specifically from
the study conducted by Tiago Krug and colleagues in 2012 (GEO
Accession: GSE22255) (12). This dataset includes expression profiles
of 54,676 genes across 20 stroke patients and 20 control samples.

Model preparation

We developed a predictive model for ischemic stroke using machine
learning techniques, leveraging a dataset of 54,677 features from Tiago
Krug's research, including a “Group” feature that categorizes samples as
either healthy or patient. Using IBM SPSS Modeler version 18 (IBM
Corporation, USA), we performed feature selection to focus on 414
significant genes, thereby enhancing model performance and reducing
computational complexity. To identify the most biologically relevant
genes for stroke diagnosis, we selected 414 genes that met our threshold
criteria: a P-Value < 0.05 (Indicating statistical significance) and a fold
change > 2 (Representing substantial differential expression). This dual-
threshold approach ensured that we focused on genes showing both
statistically reliable and biologically meaningful expression changes in
stroke. The selected 414 genes represent the most promising
transcriptomic markers for further machine learning analysis and
potential clinical application. These genes were further analyzed using
the Random Forest algorithm to identify the most relevant features for
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ischemic stroke classification. Preprocessing steps included
normalization of gene expression data using the TPM (Transcripts Per
Million) method and handling missing values using the k-nearest
neighbors imputation algorithm.

Gene enrichment analysis

Gene enrichment analysis was performed using the Gene Ontology
(GO) and KEGG databases to identify overrepresented biological
processes and pathways associated with ischemic stroke. Statistical
significance was assessed using hypergeometric tests, with p-values
adjusted for multiple testing using the Benjamini-Hochberg method.
The results were visualized through bar plots to illustrate enriched terms
and pathways, providing insights into the biological relevance of our
selected gene set. This step helps contextualize the selected genes within
broader biological mechanisms, offering deeper insights into the
underlying pathology of stroke.

Classification algorithms and rationale selection

Random Forest (RF)

A supervised ensemble learning method that constructs multiple
decision trees during training and outputs the mode (Classification) or
mean (Regression) of individual predictions. RF improves accuracy by
reducing overfitting through bagging (Bootstrap aggregating) and
random feature selection. Its robustness to high-dimensional data (e.g.,
RNA-seq’s thousands of genes) and ability to rank feature importance
make it ideal for biomarker discovery and stroke subtype classification.
CHAID (Chi-squared Automatic Interaction Detector)

A decision tree algorithm that uses chi-square tests to identify optimal
splits in categorical or discretized continuous variables. CHAID excels
in identifying hierarchical interactions between features (e.g., gene-gene
or gene-clinical variable relationships), providing interpretable rules for
stroke risk stratification. Unlike RF, CHAID is non-parametric and
handles multi-way splits, aiding clinical decision-making with
transparent criteria.

K-Nearest Neighbors (KNN)

A lazy, instance-based learning algorithm that classifies samples by
majority vote of the k nearest neighbors in feature space. KNN’s
simplicity and adaptability to non-linear patterns suit RNA-seq data,
where local gene expression similarities may define stroke phenotypes.
However, its performance depends on optimal distance metrics (e.g.,
Euclidean, Manhattan) and parameter tuning (K-selection), and it
requires careful normalization due to sensitivity to feature scales.
Rationale for selection

The selected machine learning algorithms were chosen for their
complementary strengths and in consultation with an expert in RNA-seq
data analysis for stroke diagnosis. RF handles high dimensionality,
CHAID offers interpretability for clinical translation, and KNN captures
local expression patterns. Together, they address RNA-seq challenges
(Noise, sparsity, volume) while enhancing stroke diagnostic precision
beyond traditional statistical methods.

Model implementation and performance evaluation

We utilized a Random Forest Classification model to derive decision
rules based on gene expression thresholds (10,11). The decision rules
were formulated to classify samples into stroke patients or healthy
controls. Each rule’s accuracy was assessed, and overall model accuracy
was determined. The rules and their performance metrics are detailed in
Table 1.

Table 1. Assessment criteria for classification models using training data

Measure Random Forest CHAID KNN
Sensitivity 1 1 1

Specificity 0.93 1 0.81
Precision 0.93 1 0.82
Accuracy 0.96 1 0.83

Sensitivity, specificity, precision, and accuracy are reported for Random
Forest, CHAID, and KNN models

The CHAID algorithm was employed to construct a decision tree
with six nodes (13,14). This algorithm splits the data based on
significant variables to build a tree that effectively classifies cases. The
model’s performance was evaluated across training and testing
partitions, with accuracy rates and decision rules (15).
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The KNN model was applied to classify the data based on nearest-
neighbor distances (16,17). The model’s performance was evaluated
using accuracy, precision, specificity, and sensitivity rates, confidence
values, and AUC/Gini AUC scores, as described previously (18).
Confidence thresholds were analyzed to optimize classification
reliability.

The dataset was partitioned using the Holdout method, with 70% of
the data used for training and 30% for testing. This approach was chosen
to ensure a robust evaluation of model performance while maintaining
a sufficient sample size for both training and testing. For the KNN
algorithm, the value of k was set to 5 based on preliminary experiments
that showed optimal performance at this value. Multiple experiments
were conducted using values of k ranging from 3 to 10, and k=5 was
selected as it provided the best balance between accuracy and
computational efficiency.

We selected Random Forest, CHAID, and KNN for their unique
strengths in stroke prediction. Random Forest was chosen for its high
accuracy and ability to handle large datasets with many features.
CHAID was selected for its interpretability, as it generates decision trees
that can be easily understood by clinicians. KNN was included for its
simplicity and effectiveness in classifying data based on nearest
neighbors, which is particularly useful for small datasets.

Results

The results obtained from the algorithms are as follows. All models were
developed using both training and testing data, with the dataset split into
two segments: 70% for training and 30% for testing. The evaluation
metrics for the data mining models for the training and test data are
presented in Table 1 and 2. The Random Forest model demonstrated
exceptional performance, achieving an accuracy of 96.67% in the
training partition and 80% in the testing partition. This represents a
significant improvement over previous studies using similar datasets,
where accuracy typically ranged between 70-85%. The CHAID
algorithm also showed strong performance with 100% accuracy in
training and 70% in testing, while the KNN model achieved 83.33%
accuracy in training and 90% in testing. These findings highlight the
need for larger datasets and cross-validation techniques to improve
model generalizability.

Enrichment analysis and biological pathways

We conducted gene enrichment analysis on the 414 significant genes
identified during feature selection. Gene enrichment analysis is
illustrated in Figure 1. The majority of the identified genes are
associated with inflammatory and immune responses, including the IL-
17, NF-xB, and TNF signaling pathways. According to the KEGG
database results, these biological pathways are presented in Figures 2A
-C.
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Random forest classification

The decision rules represent conditions that define the categories or
groups within the classification model. Each rule consists of one or more
predictor variables and corresponding threshold values. Figure 3 shows
genes identified as important predictors for ischemic stroke. These
genes include: FOSB, CYP2C19, SLC16A1, FAM83H, CYPIBI,
HSPBI1, CYP1A1, HSP90AAT1, CYP2C9, and FAMS83H-AS].

In the training partition, the model achieved an accuracy of 96.67%,
correctly classifying 29 out of 30 cases. In the testing partition, it
achieved an accuracy of 80%, correctly classifying all 8 cases. The
training partition results yielded an AUC score 0of 0.973 and a Gini AUC
score 0f 0.946. In the testing partition, the model achieved an AUC score
0f 0.917 and a Gini AUC score of 0.833.

Table 2. Assessment criteria for classification models using test data

Measure Random Forest CHAID KNN
Sensitivity 0.83 0.71 0.83
Specificity 0.75 0.66 0.5
Precision 0.83 0.83 0.71
Accuracy 0.8 0.7 0.9

Sensitivity, specificity, precision, and accuracy are reported for Random
Forest, CHAID, and KNN models.

CHALID algorithm

The decision tree generated by the CHAID algorithm contains six nodes.
Node 0, the root node, represents the entire dataset of 30 cases, with
53.333% (16 cases) in the “control” category and 46.667% (14 cases) in
the “case” category. Node 1 results from splitting the root node based
on TP53. The split criterion TP53 < 6.336 assigns all cases with values
less than or equal to 6.336 to this node. It contains 9 cases, all in the
“case” category (100%). Node 2 also results from splitting the root node
on TP53. The split criterion TP53 > 6.336 assigns all cases with values
greater than 6.336 to this node, which includes 21 cases, with 76.190%
(16 cases) in “control” and 23.810% (5 cases) in “case.”

Moreover, node 3 results from splitting Node 2 based on CYP2D6.
The split criterion CYP2D6 < 4.950 assigns all cases with values less
than or equal to 4.950 to this node. It contains 4 cases, all in the “case”
category (100%). Node 4 results from splitting Node 2 based on
CYP2D6 > 4.950, with 17 cases, 94.118% (16 cases) in “control” and
5.882% (1 case) in “case.” Node 5 results from splitting Node 4 based
on CYPIALI < 12.804, assigning all cases with values < 12.804 to this
node, containing 16 cases-all “control” (100%). Node 6 results from
splitting Node 4 based on CYP1A1 > 12.804, containing one case,
classified as “case” (100%).
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As shown in Figure 4, the CHAID model identified three genes-
TP53, CYP1A1, and CYP2D6-as important for differentiating between
the “control” and “case” categories. The model achieved perfect
accuracy in the training partition (100%) and performed moderately well
in the testing partition (70%). In the CHAID decision tree model, TP53
(Predict importance = 0.5), CYP1A1 (Predict importance = 0.25), and
CYP2D6 (Predict importance 0.25) were the most influential
parameters.

KNN model

The KNN model demonstrated strong performance across the data
partitions. In the training partition, the model achieved an accuracy of
83.33%, correctly classifying 25 out of 30 cases. In the testing partition,
it achieved an accuracy of 90%, correctly classifying all 9 cases. The
AUC for the training partition was 0.904 with a Gini AUC score of
0.808. In the testing partition, the AUC was 0.854 and the Gini AUC
was 0.708.

Overall, the KNN model exhibited strong performance,
characterized by high accuracy, AUC, and Gini AUC scores in both
training and testing partitions. Additionally, we identified three genes-
RPLPO, Paxillin, and HSP90AA1-as significant predictors for ischemic
stroke diagnosis. Figure 5 illustrates the performance metrics and
associated confidence intervals for the KNN model across different
partitions, including accuracy rates, confidence ranges, and AUC/Gini
AUC scores, highlighting the model’s overall efficacy and areas for
potential improvement.
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Discussion

Despite advances in medical care and preventive measures in high-
income countries, the overall incidence of stroke remains a substantial
concern due to an aging population and associated risk factors (19).
Given the limitations of current diagnostic methods, supplementary
tools that provide timely and accurate information at the molecular level
are increasingly necessary. Our findings advance previous research by
demonstrating the effectiveness of RNA-seq data combined with
machine learning models for ischemic stroke classification. Unlike
traditional approaches that rely on neuroimaging, our method offers a
molecular-level understanding of stroke pathology, identifying key
genes (Such as TP53, CYP1A1, CYP2D6) and pathways (Including IL-
17, NF-xB, and TNF signaling) that are typically not captured by
imaging techniques. The identification of these pathways has important
therapeutic implications, as they are central regulators of inflammatory
and immune responses-critical components of ischemic stroke
pathology. Targeting these pathways with anti-inflammatory agents or
immunomodulators may provide new treatment opportunities that could
improve clinical outcomes.

Recent advancements in genomics and bioinformatics have
facilitated the discovery of novel biomarkers for stroke diagnosis and
prognosis (20). These biomarkers, identified through high-throughput
techniques such as RNA sequencing (RNA-seq), offer the potential for
carlier detection and a deeper understanding of stroke pathophysiology
(21). Parallel developments in machine learning (ML) and deep learning
(DL) have introduced new strategies for enhancing diagnostic accuracy
and treatment planning (22,23). These computational approaches can
analyze large and complex datasets, identify subtle patterns, and
produce predictions that may not be readily apparent through traditional
statistical methods. ML algorithms, including Random Forests and
KNN, have shown promise in medical applications such as stroke
prediction and classification (24,25).

Machine learning has emerged as a transformative tool in medical
research, particularly for analyzing complex data such as RNA-seq (26).
ML algorithms can be used to classify stroke types, predict outcomes,
and identify novel biomarkers by analyzing gene expression patterns
and related features. The application of ML in stroke research provides
several advantages. ML models can process large volumes of data and
detect complex relationships that may be missed by traditional methods-
an especially valuable capability given the high-dimensional nature of
transcriptomic datasets (27). These models can be trained to predict
stroke occurrence, severity, and outcomes using gene expression
profiles, supporting early diagnosis and enabling personalized treatment
strategies (28). ML methods also aid in dimensionality reduction,
preserving essential biological information while improving model
performance (29). Furthermore, ML models can integrate multi-omics
data-such as genomics, transcriptomics, and proteomics-to provide a
more comprehensive understanding of stroke pathology and identify
therapeutic targets (30).

In this study, enrichment analyses (Figures 1 and 2) showed that the
most prominent pathways were associated with inflammatory responses.
We developed and validated several ML models using RNA-seq data to
predict ischemic stroke, including Random Forest Classification, the
CHAID Algorithm, and KNN. Each model offered unique insights into
stroke prediction and classification, highlighting their specific strengths
and limitations.

The Random Forest Classification model is a decision tree-based
ensemble algorithm that builds multiple trees and aggregates their
outputs to improve predictive accuracy (31). In our study, this model
demonstrated exceptional performance, achieving 96.67% accuracy in
the training set and 80% in the test set. The decision rules effectively
classified stroke patients and controls based on gene expression
thresholds. For example, certain rules indicated that high FOSB
expression and low FAM83H-AS1 expression were associated with
stroke. These findings are biologically plausible, as FOSB, a
transcription factor, plays roles in cell proliferation, differentiation,
inflammatory responses, and neuronal plasticity (32,33). FAM&3H,
while primarily known for its involvement in enamel formation (34),
may influence inflammation or gene regulation, suggesting a possible
role in stroke mechanisms.

The CHAID algorithm produced a decision tree with six nodes
based on statistically significant splits (15). The model achieved perfect
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accuracy in the training set and moderate-high performance in the
testing set. The CHAID tree identified TP53, CYP1ALl, and CYP2D6 as
critical predictors. TP53 is a central regulator of apoptosis,
inflammation, cell cycle progression, and DNA repair, making it highly
relevant to ischemic injury and neuroprotection (35). CYP1A1, whose
expression can be regulated by the aryl hydrocarbon receptor (AhR) and
p53 pathways, may participate in oxidative metabolism and cellular
responses to ischemia (36). CYP2D6, a major drug-metabolizing
enzyme, may influence inflammatory processes or treatment responses
in stroke patients (37,38). These genes therefore represent meaningful
biological markers for classification.

The KNN model classifies samples based on similarity in the feature
space (39). It demonstrated strong performance with high accuracy
across training and testing partitions. The model identified RPLPO,
Paxillin, and HSP90AA1 as significant predictors. RPLPO, a ribosomal
protein involved in protein synthesis, may contribute to neuronal repair,
though direct evidence in stroke is limited (40). Paxillin is involved in
endothelial migration, inflammation, and vascular smooth muscle
regulation-processes central to ischemic stroke pathology (41-43).
HSP90AA1, a molecular chaperone, promotes neuroprotection,
modulates inflammation, and may serve as a biomarker for stroke
outcomes (42,44).

Overall, the ML models demonstrated strong potential for stroke
prediction and classification. Each model offered distinct advantages.
Random Forest provided clear and interpretable decision rules with high
accuracy. The CHAID algorithm offered transparent decision paths
based on statistical significance. KNN delivered strong predictive
performance with high accuracy and confidence values. While KNN and
Random Forest are computationally more demanding, all three models
contribute unique perspectives on stroke prediction. The choice of
model ultimately depends on research needs such as interpretability,
accuracy, and computational resources. Combining multiple models
could further improve predictive performance and offer more
comprehensive assessments of stroke risk. Our findings align with
previous studies that have used ML for stroke prediction, but our
integration of RNA-seq data adds a novel molecular-level dimension.

Despite promising results, this study has limitations. The dataset
consisted of only 40 samples (20 stroke patients and 20 controls), which
may limit generalizability and statistical power. Additionally, model
evaluation relied on a single train-test split without repeated
randomization or cross-validation, which may introduce sampling bias
and overestimate performance. Although our feature selection was
focused on biologically relevant genes, incorporating additional omics
data or clinical variables could improve predictive accuracy. Future
research should validate these findings in larger, independent cohorts
using rigorous validation methods such as k-fold cross-validation, and
explore integrating molecular signatures into clinical workflows to
support real-world diagnostic and therapeutic decision-making.

Conclusion

This study demonstrated the potential of machine learning techniques,
including Random Forest Classification, the CHAID Algorithm, and K-
Nearest Neighbors, in predicting and classifying ischemic stroke using
RNA-seq data. Each model offered unique insights and strengths,
highlighting the importance of ML in advancing stroke diagnosis and
treatment. While the results are promising, further research and
optimization are needed to enhance model performance and demonstrate
their practical integration into clinical workflows.

The findings suggest that combining genomic data with advanced
computational techniques can enable earlier detection and a deeper
understanding of ischemic stroke mechanisms. Future studies should
expand the dataset and incorporate additional omics layers to improve
model robustness and generalizability. Ultimately, the application of ML
in stroke research holds significant promise for improving diagnostic
accuracy and personalizing treatment strategies, paving the way for
more effective stroke management and better patient outcomes.
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