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Introduction 

Stroke is a major cause of disability in adults and the second leading 

cause of death worldwide, significantly impacting individuals and 

healthcare systems (1). Over the past thirty years, the incidence and 

prevalence of stroke have risen, influenced by demographic and 

economic factors (2). Ischemic strokes, which occur when blood flow is 

blocked by an occluded blood vessel, represent about 87% of cases (3). 

Hemorrhagic strokes, resulting from the rupture or leakage of weakened 

blood vessels in the brain, account for the remaining 13% (4). In high-

income countries, stroke incidence has declined due to improved 

preventive measures and lifestyle changes, but an aging population is 

expected to increase new cases, adding to the healthcare burden (5). 

Given the severity and prevalence of strokes, there is growing interest 

in using novel biomarkers as supplementary diagnostic tools to enhance 

the accuracy of routine techniques (3). Current diagnostic tools, 

primarily neuroimaging techniques, though essential, have limitations, 

including high costs, limited availability, and delays in detection, 

especially in the early stages of stroke (6). These limitations highlight 

the importance of searching for novel biomarkers that can provide more 

timely and accurate diagnoses, monitor disease severity, and assess 

treatment efficacy (7). Recent advancements in genomics and 

bioinformatics have led to the exploration of RNA-seq data as a 

powerful tool for identifying such biomarkers, offering a molecular-

level understanding of stroke pathology that complements traditional 

diagnostic methods. Unlike proteomics or metabolomics, which focus 

on proteins and metabolites, RNA-seq provides a comprehensive view 

of gene expression, allowing for the identification of differentially 

expressed genes and pathways that may be involved in stroke pathology. 

RNA-seq data analysis poses significant challenges, including 

complex preprocessing steps such as quality control, alignment, and 

normalization, all of which critically impact the results. The high 

dimensionality of transcriptomic data, with thousands of genes across 

limited samples, complicates feature selection and increases the risk of 

overfitting, while large sequencing volumes demand scalable 

computational resources. Machine learning (ML) offers solutions by 

Highlights 

What is current knowledge? 

• Stroke is a significant global health concern, with ischemic 

strokes accounting for the majority of cases. 

• Neuroimaging techniques are the primary diagnostic tools, yet 

supplementary methods are needed to enhance diagnostic 

accuracy. 

• Machine learning techniques are increasingly being explored 

in biomedical research for predictive modeling and disease 

classification. 

What is new here? 

• RNA-seq data from ischemic stroke patients were utilized to 

develop and evaluate machine learning models for stroke 

classification. 

• Among the evaluated models, Random Forest showed the 

highest accuracy, while CHAID produced interpretable results 

with key gene markers (TP53, CYP1A1, and CYP2D6). 

• This study demonstrates the potential of machine learning 

techniques not only to enhance diagnostic accuracy but also to 

provide insights into ischemic stroke pathology, supporting 

improved clinical decision-making. 

Abstract 

Background: Stroke is a leading cause of disability and mortality worldwide, with ischemic strokes 

comprising the majority of cases. Despite advances in neuroimaging, there is a pressing need for 

supplementary diagnostic tools to enhance accuracy. This study explores the application of machine 

learning (ML) techniques to predict ischemic stroke using RNA-seq data from the GEO database 

(GSE22255). 

Methods: We developed and evaluated various machine learning models, including Random Forest, 

K-Nearest Neighbors (KNN), and CHAID (Chi-squared Automatic Interaction Detection), based on 

their accuracy, precision, specificity, and sensitivity. The analysis utilized a dataset comprising 

54,676 genes across 40 samples (20 cases and 20 controls). All modeling was conducted using IBM 

SPSS Modeler version 18. 

Results: The models were assessed based on their classification accuracy, performance evaluation 

scores, and AUC/Gini AUC metrics. The Random Forest model achieved the highest accuracy 

(96.67% in training, 80% in testing), while the CHAID algorithm provided interpretable results with 

key variables (TP53, CYP1A1, and CYP2D6) identified. The KNN model exhibited strong 

performance with notable confidence in its predictions. 

Conclusion: This study demonstrates the potential of ML techniques, particularly Random Forest, 

to enhance stroke diagnosis and provide insights into stroke pathology, offering a novel approach to 

improving clinical decision-making. However, the study is limited by the small sample size, and 

future work should focus on validation with larger datasets and integration with other omics data for 

clinical application. 
© The author(s) 

https://jorjanijournal.goums.ac.ir/browse.php?a_id=1052&sid=1&slc_lang=en&ftxt=0
https://www.ncbi.nlm.nih.gov/mesh/?term=Ischemic+Stroke
https://www.ncbi.nlm.nih.gov/mesh/2010029
https://www.ncbi.nlm.nih.gov/mesh/?term=Random+Forest
https://www.ncbi.nlm.nih.gov/mesh/?term=Predictive+Modeling
mailto:arabfard@gmail.com
https://orcid.org/0000-0002-1151-2437
https://orcid.org/0000-0003-3955-613X
https://jorjanijournal.goums.ac.ir/article-1-1052-en.html


Machine learning models for ischemic stroke 21 

automating preprocessing and improving reproducibility through 

adaptive pipelines. Scalable ML frameworks enable efficient processing 

of large datasets, and integrating ML enhances accuracy and biological 

insight. Thus, ML addresses RNA-seq challenges by optimizing analysis 

robustness and interpretability in transcriptomic studies. 

Extensive studies on stroke utilize large datasets, offering valuable 

insights into real-world practices and enabling population-based 

analyses. However, these datasets often have limitations, including 

potential inaccuracies in ICD-10 diagnostic codes, which may be 

influenced by physician diagnostic precision and financial incentives 

(3). Recently, artificial intelligence (AI) has gained significant 

popularity, particularly in the fields of ML and deep learning (DL) (8). 

Researchers have established and validated operational definitions of 

stroke, developing algorithms to diagnose ischemic strokes using claims 

data and multicenter registries. ML has become a powerful tool in stroke 

research, enabling the classification of stroke types, prediction of 

outcomes, and identification of subtypes (9). These techniques allow for 

the analysis of large datasets, recognition of patterns, and enhancement 

of diagnostic, treatment, and prognostic capabilities for stroke patients 

(10,11). 

AI, particularly ML and DL, is crucial for stroke diagnosis due to its 

ability to rapidly analyze complex medical data with high accuracy. 

Unlike traditional methods, which rely on manual interpretation and can 

be time-consuming, ML algorithms detect subtle patterns and early 

indicators of stroke that may be missed by human clinicians. ML models 

can also continuously learn from new data, enhancing their predictive 

performance over time. These advantages lead to faster, more precise 

diagnoses, ultimately improving patient outcomes and reducing 

healthcare burdens. 

Combining ML with RNA-seq revolutionizes stroke diagnosis by 

detecting novel biomarkers and gene-expression patterns that traditional 

methods may overlook. This data-driven approach enhances diagnostic 

precision and provides real-time molecular insights for personalized 

treatment. ML models uncover hidden transcriptomic signatures, 

enabling early intervention and optimized therapies. By bridging 

molecular biology and clinical practice, this synergy improves patient 

outcomes. The research represents a major leap forward in precision 

medicine for stroke care. This study aims to apply and validate a 

machine learning-based predictive model for ischemic stroke using 

RNA-seq data. By analyzing gene expression profiles from stroke 

patients and healthy controls, and selecting significant genes, we seek 

to improve stroke diagnosis accuracy and contribute to more effective 

treatment strategies. Our work builds on previous research by leveraging 

RNA-seq data, which provides a more comprehensive view of gene 

expression compared to traditional methods, and by comparing multiple 

machine learning models to identify the most effective approach for 

stroke classification. 

 

Methods 

Data acquisition 

We obtained RNA-seq data from the GEO database, specifically from 

the study conducted by Tiago Krug and colleagues in 2012 (GEO 

Accession: GSE22255) (12). This dataset includes expression profiles 

of 54,676 genes across 20 stroke patients and 20 control samples. 

Model preparation 

We developed a predictive model for ischemic stroke using machine 

learning techniques, leveraging a dataset of 54,677 features from Tiago 

Krug's research, including a “Group” feature that categorizes samples as 

either healthy or patient. Using IBM SPSS Modeler version 18 (IBM 

Corporation, USA), we performed feature selection to focus on 414 

significant genes, thereby enhancing model performance and reducing 

computational complexity. To identify the most biologically relevant 

genes for stroke diagnosis, we selected 414 genes that met our threshold 

criteria: a P-Value < 0.05 (Indicating statistical significance) and a fold 

change > 2 (Representing substantial differential expression). This dual-

threshold approach ensured that we focused on genes showing both 

statistically reliable and biologically meaningful expression changes in 

stroke. The selected 414 genes represent the most promising 

transcriptomic markers for further machine learning analysis and 

potential clinical application. These genes were further analyzed using 

the Random Forest algorithm to identify the most relevant features for 

ischemic stroke classification. Preprocessing steps included 

normalization of gene expression data using the TPM (Transcripts Per 

Million) method and handling missing values using the k-nearest 

neighbors imputation algorithm. 

Gene enrichment analysis 

Gene enrichment analysis was performed using the Gene Ontology 

(GO) and KEGG databases to identify overrepresented biological 

processes and pathways associated with ischemic stroke. Statistical 

significance was assessed using hypergeometric tests, with p-values 

adjusted for multiple testing using the Benjamini-Hochberg method. 

The results were visualized through bar plots to illustrate enriched terms 

and pathways, providing insights into the biological relevance of our 

selected gene set. This step helps contextualize the selected genes within 

broader biological mechanisms, offering deeper insights into the 

underlying pathology of stroke. 

Classification algorithms and rationale selection 

Random Forest (RF) 

A supervised ensemble learning method that constructs multiple 

decision trees during training and outputs the mode (Classification) or 

mean (Regression) of individual predictions. RF improves accuracy by 

reducing overfitting through bagging (Bootstrap aggregating) and 

random feature selection. Its robustness to high-dimensional data (e.g., 

RNA-seq’s thousands of genes) and ability to rank feature importance 

make it ideal for biomarker discovery and stroke subtype classification. 

CHAID (Chi-squared Automatic Interaction Detector) 

A decision tree algorithm that uses chi-square tests to identify optimal 

splits in categorical or discretized continuous variables. CHAID excels 

in identifying hierarchical interactions between features (e.g., gene-gene 

or gene-clinical variable relationships), providing interpretable rules for 

stroke risk stratification. Unlike RF, CHAID is non-parametric and 

handles multi-way splits, aiding clinical decision-making with 

transparent criteria. 

K-Nearest Neighbors (KNN) 

A lazy, instance-based learning algorithm that classifies samples by 

majority vote of the k nearest neighbors in feature space. KNN’s 

simplicity and adaptability to non-linear patterns suit RNA-seq data, 

where local gene expression similarities may define stroke phenotypes. 

However, its performance depends on optimal distance metrics (e.g., 

Euclidean, Manhattan) and parameter tuning (K-selection), and it 

requires careful normalization due to sensitivity to feature scales. 

Rationale for selection 

The selected machine learning algorithms were chosen for their 

complementary strengths and in consultation with an expert in RNA-seq 

data analysis for stroke diagnosis. RF handles high dimensionality, 

CHAID offers interpretability for clinical translation, and KNN captures 

local expression patterns. Together, they address RNA-seq challenges 

(Noise, sparsity, volume) while enhancing stroke diagnostic precision 

beyond traditional statistical methods. 

Model implementation and performance evaluation 

We utilized a Random Forest Classification model to derive decision 

rules based on gene expression thresholds (10,11). The decision rules 

were formulated to classify samples into stroke patients or healthy 

controls. Each rule’s accuracy was assessed, and overall model accuracy 

was determined. The rules and their performance metrics are detailed in 

Table 1. 

 
The CHAID algorithm was employed to construct a decision tree 

with six nodes (13,14). This algorithm splits the data based on 

significant variables to build a tree that effectively classifies cases. The 

model’s performance was evaluated across training and testing 

partitions, with accuracy rates and decision rules (15). 

 

Table 1. Assessment criteria for classification models using training data 

Measure Random Forest CHAID KNN 

Sensitivity 1 1 1 

Specificity 0.93 1 0.81 

Precision 0.93 1 0.82 

Accuracy 0.96 1 0.83 

Sensitivity, specificity, precision, and accuracy are reported for Random 

Forest, CHAID, and KNN models 
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The KNN model was applied to classify the data based on nearest-

neighbor distances (16,17). The model’s performance was evaluated 

using accuracy, precision, specificity, and sensitivity rates, confidence 

values, and AUC/Gini AUC scores, as described previously (18). 

Confidence thresholds were analyzed to optimize classification 

reliability. 

The dataset was partitioned using the Holdout method, with 70% of 

the data used for training and 30% for testing. This approach was chosen 

to ensure a robust evaluation of model performance while maintaining 

a sufficient sample size for both training and testing. For the KNN 

algorithm, the value of k was set to 5 based on preliminary experiments 

that showed optimal performance at this value. Multiple experiments 

were conducted using values of k ranging from 3 to 10, and k=5 was 

selected as it provided the best balance between accuracy and 

computational efficiency. 

We selected Random Forest, CHAID, and KNN for their unique 

strengths in stroke prediction. Random Forest was chosen for its high 

accuracy and ability to handle large datasets with many features. 

CHAID was selected for its interpretability, as it generates decision trees 

that can be easily understood by clinicians. KNN was included for its 

simplicity and effectiveness in classifying data based on nearest 

neighbors, which is particularly useful for small datasets. 
 

Results 
The results obtained from the algorithms are as follows. All models were 

developed using both training and testing data, with the dataset split into 

two segments: 70% for training and 30% for testing. The evaluation 

metrics for the data mining models for the training and test data are 

presented in Table 1 and 2. The Random Forest model demonstrated 

exceptional performance, achieving an accuracy of 96.67% in the 

training partition and 80% in the testing partition. This represents a 

significant improvement over previous studies using similar datasets, 

where accuracy typically ranged between 70-85%. The CHAID 

algorithm also showed strong performance with 100% accuracy in 

training and 70% in testing, while the KNN model achieved 83.33% 

accuracy in training and 90% in testing. These findings highlight the 

need for larger datasets and cross-validation techniques to improve 

model generalizability. 

Enrichment analysis and biological pathways 

We conducted gene enrichment analysis on the 414 significant genes 

identified during feature selection. Gene enrichment analysis is 

illustrated in Figure 1. The majority of the identified genes are 

associated with inflammatory and immune responses, including the IL-

17, NF-κB, and TNF signaling pathways. According to the KEGG 

database results, these biological pathways are presented in Figures 2A 

- C. 

Random forest classification 

The decision rules represent conditions that define the categories or 

groups within the classification model. Each rule consists of one or more 

predictor variables and corresponding threshold values. Figure 3 shows 

genes identified as important predictors for ischemic stroke. These 

genes include: FOSB, CYP2C19, SLC16A1, FAM83H, CYP1B1, 

HSPB1, CYP1A1, HSP90AA1, CYP2C9, and FAM83H-AS1. 

In the training partition, the model achieved an accuracy of 96.67%, 

correctly classifying 29 out of 30 cases. In the testing partition, it 

achieved an accuracy of 80%, correctly classifying all 8 cases. The 

training partition results yielded an AUC score of 0.973 and a Gini AUC 

score of 0.946. In the testing partition, the model achieved an AUC score 

of 0.917 and a Gini AUC score of 0.833. 

 

CHAID algorithm 

The decision tree generated by the CHAID algorithm contains six nodes. 

Node 0, the root node, represents the entire dataset of 30 cases, with 

53.333% (16 cases) in the “control” category and 46.667% (14 cases) in 

the “case” category. Node 1 results from splitting the root node based 

on TP53. The split criterion TP53 ≤ 6.336 assigns all cases with values 

less than or equal to 6.336 to this node. It contains 9 cases, all in the 

“case” category (100%). Node 2 also results from splitting the root node 

on TP53. The split criterion TP53 > 6.336 assigns all cases with values 

greater than 6.336 to this node, which includes 21 cases, with 76.190% 

(16 cases) in “control” and 23.810% (5 cases) in “case.” 

Moreover, node 3 results from splitting Node 2 based on CYP2D6. 

The split criterion CYP2D6 ≤ 4.950 assigns all cases with values less 

than or equal to 4.950 to this node. It contains 4 cases, all in the “case” 

category (100%). Node 4 results from splitting Node 2 based on 

CYP2D6 > 4.950, with 17 cases, 94.118% (16 cases) in “control” and 

5.882% (1 case) in “case.” Node 5 results from splitting Node 4 based 

on CYP1A1 ≤ 12.804, assigning all cases with values ≤ 12.804 to this 

node, containing 16 cases-all “control” (100%). Node 6 results from 

splitting Node 4 based on CYP1A1 > 12.804, containing one case, 

classified as “case” (100%). 

Table 2. Assessment criteria for classification models using test data 

Measure Random Forest CHAID KNN 

Sensitivity 0.83 0.71 0.83 

Specificity 0.75 0.66 0.5 

Precision 0.83 0.83 0.71 

Accuracy 0.8 0.7 0.9 

Sensitivity, specificity, precision, and accuracy are reported for Random 

Forest, CHAID, and KNN models. 

 
Figure 1. Gene enrichment analysis in ischemic stroke patients. Bar plots illustrate the enriched terms and pathways identified using the Gene Ontology (GO) 

and KEGG databases 
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As shown in Figure 4, the CHAID model identified three genes-

TP53, CYP1A1, and CYP2D6-as important for differentiating between 

the “control” and “case” categories. The model achieved perfect 

accuracy in the training partition (100%) and performed moderately well 

in the testing partition (70%). In the CHAID decision tree model, TP53 

(Predict importance = 0.5), CYP1A1 (Predict importance = 0.25), and 

CYP2D6 (Predict importance = 0.25) were the most influential 

parameters. 

KNN model 

The KNN model demonstrated strong performance across the data 

partitions. In the training partition, the model achieved an accuracy of 

83.33%, correctly classifying 25 out of 30 cases. In the testing partition, 

it achieved an accuracy of 90%, correctly classifying all 9 cases. The 

AUC for the training partition was 0.904 with a Gini AUC score of 

0.808. In the testing partition, the AUC was 0.854 and the Gini AUC 

was 0.708. 

Overall, the KNN model exhibited strong performance, 

characterized by high accuracy, AUC, and Gini AUC scores in both 

training and testing partitions. Additionally, we identified three genes-

RPLP0, Paxillin, and HSP90AA1-as significant predictors for ischemic 

stroke diagnosis. Figure 5 illustrates the performance metrics and 

associated confidence intervals for the KNN model across different 

partitions, including accuracy rates, confidence ranges, and AUC/Gini 

AUC scores, highlighting the model’s overall efficacy and areas for 

potential improvement. 
 

Figure 3. Important genes identified as ischemic stroke predictors 

 

Figure 2. The most inflammatory signaling pathways from the KEGG database in ischemic stroke patients: IL-17 (A), NF-κB (B), and TNF (C) 
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Figure 4. Decision tree generated by the CHAID algorithm 

 

 
Figure 5. K-Nearest neighbors model predictor space (k=5) built on 3 selected predictors 



Jorjani Biomedicine Journal, 2025, Volume 13, Number 2 26 

Discussion 

Despite advances in medical care and preventive measures in high-

income countries, the overall incidence of stroke remains a substantial 

concern due to an aging population and associated risk factors (19). 

Given the limitations of current diagnostic methods, supplementary 

tools that provide timely and accurate information at the molecular level 

are increasingly necessary. Our findings advance previous research by 

demonstrating the effectiveness of RNA-seq data combined with 

machine learning models for ischemic stroke classification. Unlike 

traditional approaches that rely on neuroimaging, our method offers a 

molecular-level understanding of stroke pathology, identifying key 

genes (Such as TP53, CYP1A1, CYP2D6) and pathways (Including IL-

17, NF-κB, and TNF signaling) that are typically not captured by 

imaging techniques. The identification of these pathways has important 

therapeutic implications, as they are central regulators of inflammatory 

and immune responses-critical components of ischemic stroke 

pathology. Targeting these pathways with anti-inflammatory agents or 

immunomodulators may provide new treatment opportunities that could 

improve clinical outcomes. 

Recent advancements in genomics and bioinformatics have 

facilitated the discovery of novel biomarkers for stroke diagnosis and 

prognosis (20). These biomarkers, identified through high-throughput 

techniques such as RNA sequencing (RNA-seq), offer the potential for 

earlier detection and a deeper understanding of stroke pathophysiology 

(21). Parallel developments in machine learning (ML) and deep learning 

(DL) have introduced new strategies for enhancing diagnostic accuracy 

and treatment planning (22,23). These computational approaches can 

analyze large and complex datasets, identify subtle patterns, and 

produce predictions that may not be readily apparent through traditional 

statistical methods. ML algorithms, including Random Forests and 

KNN, have shown promise in medical applications such as stroke 

prediction and classification (24,25). 

Machine learning has emerged as a transformative tool in medical 

research, particularly for analyzing complex data such as RNA-seq (26). 

ML algorithms can be used to classify stroke types, predict outcomes, 

and identify novel biomarkers by analyzing gene expression patterns 

and related features. The application of ML in stroke research provides 

several advantages. ML models can process large volumes of data and 

detect complex relationships that may be missed by traditional methods-

an especially valuable capability given the high-dimensional nature of 

transcriptomic datasets (27). These models can be trained to predict 

stroke occurrence, severity, and outcomes using gene expression 

profiles, supporting early diagnosis and enabling personalized treatment 

strategies (28). ML methods also aid in dimensionality reduction, 

preserving essential biological information while improving model 

performance (29). Furthermore, ML models can integrate multi-omics 

data-such as genomics, transcriptomics, and proteomics-to provide a 

more comprehensive understanding of stroke pathology and identify 

therapeutic targets (30). 

In this study, enrichment analyses (Figures 1 and 2) showed that the 

most prominent pathways were associated with inflammatory responses. 

We developed and validated several ML models using RNA-seq data to 

predict ischemic stroke, including Random Forest Classification, the 

CHAID Algorithm, and KNN. Each model offered unique insights into 

stroke prediction and classification, highlighting their specific strengths 

and limitations. 

The Random Forest Classification model is a decision tree-based 

ensemble algorithm that builds multiple trees and aggregates their 

outputs to improve predictive accuracy (31). In our study, this model 

demonstrated exceptional performance, achieving 96.67% accuracy in 

the training set and 80% in the test set. The decision rules effectively 

classified stroke patients and controls based on gene expression 

thresholds. For example, certain rules indicated that high FOSB 

expression and low FAM83H-AS1 expression were associated with 

stroke. These findings are biologically plausible, as FOSB, a 

transcription factor, plays roles in cell proliferation, differentiation, 

inflammatory responses, and neuronal plasticity (32,33). FAM83H, 

while primarily known for its involvement in enamel formation (34), 

may influence inflammation or gene regulation, suggesting a possible 

role in stroke mechanisms. 

The CHAID algorithm produced a decision tree with six nodes 

based on statistically significant splits (15). The model achieved perfect 

accuracy in the training set and moderate-high performance in the 

testing set. The CHAID tree identified TP53, CYP1A1, and CYP2D6 as 

critical predictors. TP53 is a central regulator of apoptosis, 

inflammation, cell cycle progression, and DNA repair, making it highly 

relevant to ischemic injury and neuroprotection (35). CYP1A1, whose 

expression can be regulated by the aryl hydrocarbon receptor (AhR) and 

p53 pathways, may participate in oxidative metabolism and cellular 

responses to ischemia (36). CYP2D6, a major drug-metabolizing 

enzyme, may influence inflammatory processes or treatment responses 

in stroke patients (37,38). These genes therefore represent meaningful 

biological markers for classification. 

The KNN model classifies samples based on similarity in the feature 

space (39). It demonstrated strong performance with high accuracy 

across training and testing partitions. The model identified RPLP0, 

Paxillin, and HSP90AA1 as significant predictors. RPLP0, a ribosomal 

protein involved in protein synthesis, may contribute to neuronal repair, 

though direct evidence in stroke is limited (40). Paxillin is involved in 

endothelial migration, inflammation, and vascular smooth muscle 

regulation-processes central to ischemic stroke pathology (41-43). 

HSP90AA1, a molecular chaperone, promotes neuroprotection, 

modulates inflammation, and may serve as a biomarker for stroke 

outcomes (42,44). 

Overall, the ML models demonstrated strong potential for stroke 

prediction and classification. Each model offered distinct advantages. 

Random Forest provided clear and interpretable decision rules with high 

accuracy. The CHAID algorithm offered transparent decision paths 

based on statistical significance. KNN delivered strong predictive 

performance with high accuracy and confidence values. While KNN and 

Random Forest are computationally more demanding, all three models 

contribute unique perspectives on stroke prediction. The choice of 

model ultimately depends on research needs such as interpretability, 

accuracy, and computational resources. Combining multiple models 

could further improve predictive performance and offer more 

comprehensive assessments of stroke risk. Our findings align with 

previous studies that have used ML for stroke prediction, but our 

integration of RNA-seq data adds a novel molecular-level dimension. 

Despite promising results, this study has limitations. The dataset 

consisted of only 40 samples (20 stroke patients and 20 controls), which 

may limit generalizability and statistical power. Additionally, model 

evaluation relied on a single train-test split without repeated 

randomization or cross-validation, which may introduce sampling bias 

and overestimate performance. Although our feature selection was 

focused on biologically relevant genes, incorporating additional omics 

data or clinical variables could improve predictive accuracy. Future 

research should validate these findings in larger, independent cohorts 

using rigorous validation methods such as k-fold cross-validation, and 

explore integrating molecular signatures into clinical workflows to 

support real-world diagnostic and therapeutic decision-making. 

 

Conclusion 

This study demonstrated the potential of machine learning techniques, 

including Random Forest Classification, the CHAID Algorithm, and K-

Nearest Neighbors, in predicting and classifying ischemic stroke using 

RNA-seq data. Each model offered unique insights and strengths, 

highlighting the importance of ML in advancing stroke diagnosis and 

treatment. While the results are promising, further research and 

optimization are needed to enhance model performance and demonstrate 

their practical integration into clinical workflows. 

The findings suggest that combining genomic data with advanced 

computational techniques can enable earlier detection and a deeper 

understanding of ischemic stroke mechanisms. Future studies should 

expand the dataset and incorporate additional omics layers to improve 

model robustness and generalizability. Ultimately, the application of ML 

in stroke research holds significant promise for improving diagnostic 

accuracy and personalizing treatment strategies, paving the way for 

more effective stroke management and better patient outcomes. 

 

Acknowledgement 

We sincerely thank Ms. Nahid Nemati and Mr. Hossein Hosseini, Ph.D. 

candidates in Systems Biomedicine at the Pasteur Institute of Iran, for 

their invaluable support and contributions. 



Machine learning models for ischemic stroke 27 

Funding sources 

This study received no specific grant from any funding agency in the 

public, commercial, or not-for-profit sectors. 

 
Ethical statement 

This study did not involve human participants, animals, or biological 

samples; therefore, ethical approval was not required. 

 
Conflicts of interest 

The authors declare no conflicts of interest relevant to this study. 

 
Author contributions 

Mina Rahmati: Data preprocessing, machine learning modeling, and 

drafting the manuscript. Masoud Arabfard: Supervision, statistical 

analysis, model evaluation, and manuscript revision. Both authors have 

read and approved the final manuscript. 

 
Data availability statement 

The raw RNA-seq gene expression data utilized in this study are 

publicly accessible in the Gene Expression Omnibus (GEO) repository 

under the accession number GSE22255. The analyzed datasets and 

associated computational findings are available upon reasonable request 

from the corresponding author, Masoud Arabfard. 

 
References 

1. Feske SK. Ischemic Stroke. Am J Med. 2021;134(12):1457-64. 

[View at Publisher] [DOI] [PMID] 

2. Putaala J. Ischemic Stroke in Young Adults. Continuum 

(Minneapolis, Minn). 2020;26(2):386-414. [View at Publisher] 

[DOI] [PMID] [Google Scholar] 

3. Lim H, Park Y, Hong JH, Yoo K-B, Seo K-D. Use of machine 

learning techniques for identifying ischemic stroke instead of the 

rule-based methods: a nationwide population-based study. Eur J 

Med Res. 2024;29(1):6. [View at Publisher] [DOI] [PMID] 

[Google Scholar] 

4. Rahmati M, Ferns GA, Mobarra N. The lower expression of 

circulating miR-210 and elevated serum levels of HIF-1α in 

ischemic stroke; Possible markers for diagnosis and disease 

prediction. J Clin Lab Anal. 2021;35(12):e24073. [View at 

Publisher] [DOI] [PMID] [Google Scholar] 

5. Li W, Shao C, Zhou H, Du H, Chen H, Wan H, et al. Multi-omics 

research strategies in ischemic stroke: A multidimensional 

perspective. Ageing Res Rev. 2022;81:101730. [View at Publisher] 

[DOI] [PMID] [Google Scholar] 

6. Patil S, Rossi R, Jabrah D, Doyle K. Detection, diagnosis and 

treatment of acute ischemic stroke: current and future perspectives. 

Front Med Technol. 2022:4:748949. 2022;4:748949. [View at 

Publisher] [DOI] [PMID] [Google Scholar] 

7. Wardlaw JM, Mair G, Von Kummer R, Williams MC, Li W, 

Storkey AJ, et al. Accuracy of automated computer-aided diagnosis 

for stroke imaging: a critical evaluation of current evidence. Stroke. 

2022;53(7):2393-403. [View at Publisher] [DOI] [PMID] [Google 

Scholar] 

8. Ruksakulpiwat S, Phianhasin L, Benjasirisan C, Schiltz NK. Using 

Neural Networks Algorithm in Ischemic Stroke Diagnosis: A 

Systematic Review. J Multidiscip Healthc. 2023;16:2593-602. 

[View at Publisher] [DOI] [PMID] [Google Scholar] 

9. Daidone M, Ferrantelli S, Tuttolomondo A. Machine learning 

applications in stroke medicine: advancements, challenges, and 

future prospectives. Neural Regen Res. 2024;19(4):769-73. [View 

at Publisher] [DOI] [PMID] [Google Scholar] 

10. Wang J, Gong X, Chen H, Zhong W, Chen Y, Zhou Y, et al. 

Causative Classification of Ischemic Stroke by the Machine 

Learning Algorithm Random Forests. Front Aging Neurosci. 

2022;14:788637. [View at Publisher] [DOI] [PMID] [Google 

Scholar] 

 

11. Jabal MS, Joly O, Kallmes D, Harston G, Rabinstein A, Huynh T, 

et al. Interpretable Machine Learning Modeling for Ischemic 

Stroke Outcome Prediction. Front Neurol. 2022;13:884693. [View 

at Publisher] [DOI] [PMID] [Google Scholar] 

12. Krug T, Gabriel JP, Taipa R, Fonseca BV, Domingues-Montanari 

S, Fernandez-Cadenas I, et al. TTC7B emerges as a novel risk 

factor for ischemic stroke through the convergence of several 

genome-wide approaches. J Cereb Blood Flow Metab. 

2012;32(6):1061-72. . [View at Publisher] [DOI] [PMID] [Google 

Scholar] 

13. Yahiya Adam S, Yousif A, Bashir MB. Classification of Ischemic 

Stroke using Machine Learning Algorithms. International Journal 

of Computer Applications. 2016;149(10):26-31. [View at 

Publisher] [DOI] [Google Scholar] 

14. Hong S, Kim H-W, Walton B, Kaboi M. The Intersectionality of 

Factors Predicting Co-occurring Disorders: A Decision Tree 

Model. Int J Ment Health Addict. 2024;22(6):1-24. [View at 

Publisher] [DOI] [Google Scholar] 

15. Althuwaynee OF, Pradhan B, Park H-J, Lee JH. A novel ensemble 

decision tree-based CHi-squared Automatic Interaction Detection 

(CHAID) and multivariate logistic regression models in landslide 

susceptibility mapping. Landslides .2014;11:1063-78. [View at 

Publisher] [DOI] [Google Scholar] 

16. Zhang Z. Introduction to machine learning: k-nearest neighbors. 

Ann Transl Med. 2016;4(11):218. [View at Publisher] [DOI] 

[PMID] [Google Scholar] 

17. Halder RK, Uddin MN, Uddin MA, Aryal S, Khraisat A. 

Enhancing K-nearest neighbor algorithm: a comprehensive review 

and performance analysis of modifications. J Big Data. 

2024;11(1):113. [View at Publisher] [DOI] [Google Scholar] 

18. Arabfard M, Najafi A, Rezaei E. Predicting COVID-19 Models for 

Death with Three Different Decision Algorithms: Analysis of 600 

Hospitalized Patients. Applied Biotechnology Reports. 

2023;10(2):1018-24. [View at Publisher] [DOI] [Google Scholar] 

19. Pandian JD, Gall SL, Kate MP, Silva GS, Akinyemi RO, Ovbiagele 

BI, et al. Prevention of stroke: a global perspective. Lancet. 

2018;392(10154):1269-78. [View at Publisher] [DOI] [PMID] 

[Google Scholar] 

20. Montaner J, Ramiro L, Simats A, Tiedt S, Makris K, Jickling GC, 

et al. Multilevel omics for the discovery of biomarkers and 

therapeutic targets for stroke. Nat Rev Neurol. 2020;16(5):247-64. 

[View at Publisher] [DOI] [PMID] [Google Scholar] 

21. Zou R, Zhang D, Lv L, Shi W, Song Z, Yi B, et al. Bioinformatic 

gene analysis for potential biomarkers and therapeutic targets of 

atrial fibrillation-related stroke. J Transl Med. 2019;17(1):45. 

[View at Publisher] [DOI] [PMID] [Google Scholar] 

22. Daidone M, Ferrantelli S, Tuttolomondo A. Machine learning 

applications in stroke medicine: advancements, challenges, and 

future prospectives. Neural Regen Res. 2024;19(4):769-73. [View 

at Publisher] [DOI] [PMID] [Google Scholar] 

23. Shah YAR, Qureshi SM, Qureshi HA, Shah S, Shiwlani A, Ahmad 

A. Artificial Intelligence in Stroke Care: Enhancing Diagnostic 

Accuracy, Personalizing Treatment, and Addressing 

Implementation Challenges. IJARSS. 2024;2(10):855-86. [View at 

Publisher] [DOI] [Google Scholar] 

24. Asif S, Wenhui Y, ur-Rehman S-, ul-ain Q-, Amjad K, Yueyang Y, 

et al. Advancements and Prospects of Machine Learning in 

Medical Diagnostics: Unveiling the Future of Diagnostic Precision. 

Arch Comput Methods Eng. 2024;32(2):853-83. [View at 

Publisher] [DOI] [Google Scholar] 

25. Fernandes JN, Cardoso VE, Comesaña-Campos A, Pinheira A. 

Comprehensive Review: Machine and Deep Learning in Brain 

Stroke Diagnosis. Sensors (Basel). 2024;24(13):4355. [View at 

Publisher] [DOI] [PMID] [Google Scholar] 

26. Deshpande D, Chhugani K, Chang Y, Karlsberg A, Loeffler C, 

Zhang J, et al. RNA-seq data science: From raw data to effective 

interpretation. Front Genet. 2023;14:997383. [View at Publisher] 

[DOI] [PMID] [Google Scholar] 

https://www.sciencedirect.com/science/article/abs/pii/S000293432100512X?via%3Dihub
https://doi.org/10.1016/j.amjmed.2021.07.027
https://www.ncbi.nlm.nih.gov/pubmed/34454905
https://continuum.aan.com/doi/10.1212/CON.0000000000000833
https://doi.org/10.1212/CON.0000000000000833
https://www.ncbi.nlm.nih.gov/pubmed/32224758
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Putaala+J.+Ischemic+Stroke+in+Young+Adults.+Continuum+%28Minneapolis%2C+Minn%29.+2020%3B26%282%29%3A386-414.&btnG=
https://eurjmedres.biomedcentral.com/articles/10.1186/s40001-023-01594-6
https://doi.org/10.1186/s40001-023-01594-6
https://www.ncbi.nlm.nih.gov/pubmed/38173022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lim+H%2C+Park+Y%2C+Hong+JH%2C+Yoo+KB%2C+Seo+KD.+Use+of+machine+learning+techniques+for+identifying+ischemic+stroke+instead+of+the+rule-based+methods%3A+a+nationwide+population-based+study.+European+j
https://onlinelibrary.wiley.com/doi/full/10.1002/jcla.24073
https://onlinelibrary.wiley.com/doi/full/10.1002/jcla.24073
https://doi.org/10.1002/jcla.24073
https://www.ncbi.nlm.nih.gov/pubmed/34708885
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Rahmati+M%2C+Ferns+GA%2C+Mobarra+N.+The+lower+expression+of+circulating+miR-210+and+elevated+serum+levels+of+HIF-1%CE%B1+in+ischemic+stroke%3B+Possible+markers+for+diagnosis+and+disease+prediction.+J
https://www.sciencedirect.com/science/article/abs/pii/S1568163722001726
https://doi.org/10.1016/j.arr.2022.101730
https://www.ncbi.nlm.nih.gov/pubmed/36087702
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Li+W%2C+Shao+C%2C+Zhou+H%2C+Du+H%2C+Chen+H%2C+Wan+H%2C+et+al.+Multi-omics+research+strategies+in+ischemic+stroke%3A+A+multidimensional+perspective.+Ageing+research+reviews.+2022%3B81%3A101730.&btnG=
https://www.frontiersin.org/journals/medical-technology/articles/10.3389/fmedt.2022.748949/full
https://www.frontiersin.org/journals/medical-technology/articles/10.3389/fmedt.2022.748949/full
https://doi.org/10.3389/fmedt.2022.748949
https://www.ncbi.nlm.nih.gov/pubmed/35813155
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Patil+S%2C+Rossi+R%2C+Jabrah+D%2C+Doyle+KJFimt.+Detection%2C+diagnosis+and+treatment+of+acute+ischemic+stroke%3A+current+and+future+perspectives.+2022%3B4%3A748949.+++&btnG=
https://www.ahajournals.org/doi/full/10.1161/STROKEAHA.121.036204
https://doi.org/10.1161/STROKEAHA.121.036204
https://www.ncbi.nlm.nih.gov/pubmed/35440170
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Wardlaw+JM%2C+Mair+G%2C+Von+Kummer+R%2C+Williams+MC%2C+Li+W%2C+Storkey+AJ%2C+et+al.+Accuracy+of+automated+computer-aided+diagnosis+for+stroke+imaging%3A+a+critical+evaluation+of+current+evidence.+202
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Wardlaw+JM%2C+Mair+G%2C+Von+Kummer+R%2C+Williams+MC%2C+Li+W%2C+Storkey+AJ%2C+et+al.+Accuracy+of+automated+computer-aided+diagnosis+for+stroke+imaging%3A+a+critical+evaluation+of+current+evidence.+202
https://www.tandfonline.com/doi/full/10.2147/JMDH.S421280
https://doi.org/10.2147/JMDH.S421280
https://www.ncbi.nlm.nih.gov/pubmed/37674890
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ruksakulpiwat+S%2C+Phianhasin+L%2C+Benjasirisan+C%2C+Schiltz+NK.+Using+Neural+Networks+Algorithm+in+Ischemic+Stroke+Diagnosis%3A+A+Systematic+Review.+Journal+of+multidisciplinary+healthcare.+2023%3B1
https://journals.lww.com/nrronline/fulltext/2024/04000/machine_learning_applications_in_stroke_medicine_.19.aspx
https://journals.lww.com/nrronline/fulltext/2024/04000/machine_learning_applications_in_stroke_medicine_.19.aspx
https://doi.org/10.4103/1673-5374.382228
https://www.ncbi.nlm.nih.gov/pubmed/37843210
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Daidone+M%2C+Ferrantelli+S%2C+Tuttolomondo+A.+Machine+learning+applications+in+stroke+medicine%3A+advancements%2C+challenges%2C+and+future+prospectives.+Neural+regeneration+research.+2024%3B19%284%29
https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2022.788637/full
https://doi.org/10.3389/fnagi.2022.788637
https://www.ncbi.nlm.nih.gov/pubmed/35493925
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Wang+J%2C+Gong+X%2C+Chen+H%2C+Zhong+W%2C+Chen+Y%2C+Zhou+Y%2C+et+al.+Causative+Classification+of+Ischemic+Stroke+by+the+Machine+Learning+Algorithm+Random+Forests.+Frontiers+in+aging+neuroscience.+2022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Wang+J%2C+Gong+X%2C+Chen+H%2C+Zhong+W%2C+Chen+Y%2C+Zhou+Y%2C+et+al.+Causative+Classification+of+Ischemic+Stroke+by+the+Machine+Learning+Algorithm+Random+Forests.+Frontiers+in+aging+neuroscience.+2022
https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2022.884693/full
https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2022.884693/full
https://doi.org/10.3389/fneur.2022.884693
https://www.ncbi.nlm.nih.gov/pubmed/35665041
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Jabal+MS%2C+Joly+O%2C+Kallmes+D%2C+Harston+G%2C+Rabinstein+A%2C+Huynh+T%2C+et+al.+Interpretable+Machine+Learning+Modeling+for+Ischemic+Stroke+Outcome+Prediction.+Frontiers+in+neurology.+2022%3B13%3A8
https://journals.sagepub.com/doi/full/10.1038/jcbfm.2012.24
https://doi.org/10.1038/jcbfm.2012.24
https://www.ncbi.nlm.nih.gov/pubmed/22453632
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Krug+T%2C+Gabriel+JP%2C+Taipa+R%2C+Fonseca+BV%2C+Domingues-Montanari+S%2C+Fernandez-Cadenas+I%2C+et+al.+TTC7B+emerges+as+a+novel+risk+factor+for+ischemic+stroke+through+the+convergence+of+several+gen
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Krug+T%2C+Gabriel+JP%2C+Taipa+R%2C+Fonseca+BV%2C+Domingues-Montanari+S%2C+Fernandez-Cadenas+I%2C+et+al.+TTC7B+emerges+as+a+novel+risk+factor+for+ischemic+stroke+through+the+convergence+of+several+gen
https://www.ijcaonline.org/archives/volume149/number10/26035-2016911607/
https://www.ijcaonline.org/archives/volume149/number10/26035-2016911607/
https://doi.org/10.5120/ijca2016911607
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Yahiya+S%2C+Yousif+A%2C+Bashir+M.+Classification+of+Ischemic+Stroke+using+Machine+Learning+Algorithms.+International+Journal+of+Computer+Applications.+2016%3B149%3A26-31.&btnG=
https://link.springer.com/article/10.1007/s11469-024-01358-1
https://link.springer.com/article/10.1007/s11469-024-01358-1
https://doi.org/10.1007/s11469-024-01358-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hong+S%2C+Kim+H-W%2C+Walton+B%2C+Kaboi+MJIJoMH%2C+Addiction.+The+Intersectionality+of+Factors+Predicting+Co-occurring+Disorders%3A+A+Decision+Tree+Model.+2024%3A1-24.&btnG=
https://link.springer.com/article/10.1007/s10346-014-0466-0
https://link.springer.com/article/10.1007/s10346-014-0466-0
https://doi.org/10.1007/s10346-014-0466-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Althuwaynee+OF%2C+Pradhan+B%2C+Park+H-J%2C+Lee+JHJL.+A+novel+ensemble+decision+tree-based+CHi-squared+Automatic+Interaction+Detection+%28CHAID%29+and+multivariate+logistic+regression+models+in+landsl
https://atm.amegroups.org/article/view/10170/11310
https://doi.org/10.21037/atm.2016.03.37
https://www.ncbi.nlm.nih.gov/pubmed/27386492
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Zhang+ZJAotm.+Introduction+to+machine+learning%3A+k-nearest+neighbors.+2016%3B4%2811%29.&btnG=
https://link.springer.com/article/10.1186/s40537-024-00973-y
https://doi.org/10.1186/s40537-024-00973-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Halder+RK%2C+Uddin+MN%2C+Uddin+MA%2C+Aryal+S%2C+Khraisat+AJJoBD.+Enhancing+K-nearest+neighbor+algorithm%3A+a+comprehensive+review+and+performance+analysis+of+modifications.+2024%3B11%281%29%3A113.&bt
https://www.biotechrep.ir/article_174249.html
https://doi.org/10.30491/jabr.2022.328558.1492
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Masoud+Arabfard+AN%2C+Ehsan+Rezaei+Predicting+COVID-19+Models+for+Death+with+Three+Different+Decision+Algorithms%3A+Analysis+of+600+Hospitalized+Patients.+Applied+Biotechnology+Reports.+2023.&btnG=
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(18)31269-8/fulltext
https://doi.org/10.1016/S0140-6736(18)31269-8
https://www.ncbi.nlm.nih.gov/pubmed/30319114
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Pandian+JD%2C+Gall+SL%2C+Kate+MP%2C+Silva+GS%2C+Akinyemi+RO%2C+Ovbiagele+BI%2C+et+al.+Prevention+of+stroke%3A+a+global+perspective.+2018%3B392%2810154%29%3A1269-78.&btnG=
https://www.nature.com/articles/s41582-020-0350-6
https://doi.org/10.1038/s41582-020-0350-6
https://www.ncbi.nlm.nih.gov/pubmed/32322099
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Montaner+J%2C+Ramiro+L%2C+Simats+A%2C+Tiedt+S%2C+Makris+K%2C+Jickling+GC%2C+et+al.+Multilevel+omics+for+the+discovery+of+biomarkers+and+therapeutic+targets+for+stroke.+2020%3B16%285%29%3A247-64.&btnG
https://link.springer.com/article/10.1186/s12967-019-1790-x
https://doi.org/10.1186/s12967-019-1790-x
https://www.ncbi.nlm.nih.gov/pubmed/30760287
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Zou+R%2C+Zhang+D%2C+Lv+L%2C+Shi+W%2C+Song+Z%2C+Yi+B%2C+et+al.+Bioinformatic+gene+analysis+for+potential+biomarkers+and+therapeutic+targets+of+atrial+fibrillation-related+stroke.+2019%3B17%3A1-12.+++&
https://www.ovid.com/journals/nrgr/fulltext/10.4103/1673-5374.382228~machine-learning-applications-in-stroke-medicine
https://www.ovid.com/journals/nrgr/fulltext/10.4103/1673-5374.382228~machine-learning-applications-in-stroke-medicine
https://doi.org/10.4103/1673-5374.382228
https://www.ncbi.nlm.nih.gov/pubmed/37843210
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Daidone+M%2C+Ferrantelli+S%2C+Tuttolomondo+AJNrr.+Machine+learning+applications+in+stroke+medicine%3A+advancements%2C+challenges%2C+and+future+prospectives.+2024%3B19%284%29%3A769-73.+++&btnG=
https://journal.multitechpublisher.com/index.php/ijarss/article/view/2575
https://journal.multitechpublisher.com/index.php/ijarss/article/view/2575
https://doi.org/10.59890/ijarss.v2i10.2575
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Shah+YAR%2C+Qureshi+SM%2C+Qureshi+H%2C+Shah+S%2C+Shiwlani+A%2C+Ahmad+AJIJARSS.+Artificial+Intelligence+in+Stroke+Care%3A+Enhancing+Diagnostic+Accuracy%2C+Personalizing+Treatment%2C+and+Addressing+Imp
https://link.springer.com/article/10.1007/s11831-024-10148-w
https://link.springer.com/article/10.1007/s11831-024-10148-w
https://doi.org/10.1007/s11831-024-10148-w
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Asif+S%2C+Wenhui+Y%2C+ur-Rehman+S-%2C+ul-ain+Q-%2C+Amjad+K%2C+Yueyang+Y%2C+et+al.+Advancements+and+Prospects+of+Machine+Learning+in+Medical+Diagnostics%3A+Unveiling+the+Future+of+Diagnostic+Precision
https://www.mdpi.com/1424-8220/24/13/4355
https://www.mdpi.com/1424-8220/24/13/4355
https://doi.org/10.3390/s24134355
https://www.ncbi.nlm.nih.gov/pubmed/39001134
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fernandes+JN%2C+Cardoso+VE%2C+Comesa%C3%B1a-Campos+A%2C+Pinheira+AJS.+Comprehensive+Review%3A+Machine+and+Deep+Learning+in+Brain+Stroke+Diagnosis.+2024%3B24%2813%29%3A4355.&btnG=
https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2023.997383/full
https://doi.org/10.3389/fgene.2023.997383
https://www.ncbi.nlm.nih.gov/pubmed/36999049
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deshpande+D%2C+Chhugani+K%2C+Chang+Y%2C+Karlsberg+A%2C+Loeffler+C%2C+Zhang+J%2C+et+al.+RNA-seq+data+science%3A+From+raw+data+to+effective+interpretation.+2023%3B14%3A997383.&btnG=


Jorjani Biomedicine Journal, 2025, Volume 13, Number 2 28 

27. Zhou L, Pan S, Wang J, Vasilakos A. Machine learning on big data: 

Opportunities and challenges. Neurocomputing. 2017;237:350-61. 

[View at Publisher] [DOI] [Google Scholar] 

28. Heo J, Yoon JG, Park H, Kim YD, Nam HS, Heo JH. Machine 

learning-based model for prediction of outcomes in acute stroke. 

Stroke. 2019;50(5):1263-5. [View at Publisher] [DOI] [PMID] 

[Google Scholar] 

29. Diaz-Uriarte R, Gómez de Lope E, Giugno R, Fröhlich H, Nazarov 

PV, Nepomuceno-Chamorro IA, et al. Ten quick tips for biomarker 

discovery and validation analyses using machine learning. PLoS 

Comput Biol. 2022;18(8):e1010357. [View at Publisher] [DOI] 

[PMID] [Google Scholar] 

30. Perakakis N, Yazdani A, Karniadakis GE, Mantzoros C. Omics, 

big data and machine learning as tools to propel understanding of 

biological mechanisms and to discover novel diagnostics and 

therapeutics. Metabolism. 2018:87:A1-A9. [View at Publisher] 

[DOI] [PMID] [Google Scholar] 

31. Imran B, Wahyudi E, Subki A, Salman S, Yani A. Classification of 

stroke patients using data mining with adaboost, decision tree and 

random forest models. ilk. J. Ilm. 2022;14(3):218-28. [View at 

Publisher] [DOI] [Google Scholar] 

32. Mu Q, Zhang Y, Gu L, Gerner ST, Qiu X, Tao Q, et al. 

Transcriptomic Profiling Reveals the Antiapoptosis and 

Antioxidant Stress Effects of Fos in Ischemic Stroke. Front Neurol. 

2021;12:728984. [View at Publisher] [DOI] [PMID] [Google 

Scholar] 

33. Kurushima H, Ohno M, Miura T, Nakamura TY, Horie H, Kadoya 

T, et al. Selective induction of DeltaFosB in the brain after transient 

forebrain ischemia accompanied by an increased expression of 

galectin-1, and the implication of DeltaFosB and galectin-1 in 

neuroprotection and neurogenesis. Cell Death Differ. 

2005;12(8):1078-96. [View at Publisher] [DOI] [PMID] [Google 

Scholar] 

34. Wang SK, Zhang H, Hu CY, Liu JF, Chadha S, Kim JW, et al. 

FAM83H and Autosomal Dominant Hypocalcified Amelogenesis 

Imperfecta. J Dent Res. 2021;100(3):293-301. [View at Publisher] 

[DOI] [PMID] [Google Scholar] 

35. Aubrey BJ, Strasser A, Kelly GL. Tumor-Suppressor Functions of 

the TP53 Pathway. Cold Spring Harb Perspect Med. 

2016;6(5):a026062. [View at Publisher] [DOI] [PMID] [Google 

Scholar] 

36. Meng F-d, Ma P, Sui C-g, Tian X, Jiang Y-h. Association between 

cytochrome P450 1A1 (CYP1A1) gene polymorphisms and the 

risk of renal cell carcinoma: a meta-analysis. Sci Rep. 

2015;5(1):8108. [View at Publisher] [DOI] [PMID] [Google 

Scholar] 

37. Carnwath TP, Demel SL, Prestigiacomo CJ. Genetics of ischemic 

stroke functional outcome. J Neurol. 2024;271(5):2345-69. [View 

at Publisher] [DOI] [PMID] [Google Scholar] 

38. Peng C, Ding Y, Yi X, Shen Y, Dong Z, Cao L, et al. 

Polymorphisms in CYP450 Genes and the Therapeutic Effect of 

Atorvastatin on Ischemic Stroke: A Retrospective Cohort Study in 

Chinese Population. Clin Ther. 2018;40(3):469-77.e2. [View at 

Publisher] [DOI:] [PMID] [Google Scholar] 

39. Zhang S, Li X, Zong M, Zhu X, Wang R. Efficient kNN 

classification with different numbers of nearest neighbors. IEEE 

Trans Neural Netw Learn Syst. 2018;29(5):1774-85. [View at 

Publisher] [DOI] [PMID] [Google Scholar] 

40. Wang X, Zhang XY, Liao N-Q, He Z-H, Chen Q-F. Identification 

of ribosome biogenesis genes and subgroups in ischaemic stroke. 

Front Immunol. 2024;15:1449158. [View at Publisher] [DOI] 

[PMID] [Google Scholar] 

41. Zhang Y, Li N, Kobayashi S. Paxillin participates in the 

sphingosylphosphorylcholine-induced abnormal contraction of 

vascular smooth muscle by regulating Rho-kinase activation. Cell 

Commun Signal. 2024;22(1):58. [View at Publisher] [DOI] 

[Google Scholar] 

42. Yi J-H, Park S-W, Kapadia R, Vemuganti R. Role of transcription 

factors in mediating post-ischemic cerebral inflammation and brain 

damage. Neurochem Int. 2007;50(7-8):1014-27. [View at 

Publisher] [DOI] [PMID] [Google Scholar] 

43. German AE, Mammoto T, Jiang E, Ingber DE, Mammoto A. 

Paxillin controls endothelial cell migration and tumor angiogenesis 

by altering neuropilin 2 expression. J Cell Sci. 2014;127(Pt 

8):1672-83. [View at Publisher] [DOI] [PMID] [Google Scholar] 

44. Liang J, Feng J, Lin Z, Wei J, Luo X, Wang QM, et al. Research 

on prognostic risk assessment model for acute ischemic stroke 

based on imaging and multidimensional data. Front Neurol. 

2023;14:1294723. [View at Publisher] [DOI] [PMID] [Google 

Scholar] 

 

Cite this article as: 

Rahmati M, Arabfard M. Comparative performance of machine learning models in ischemic stroke classification. 

Jorjani Biomedicine Journal. 2025;13(2):20-8. http://dx.doi.org/10.29252/jorjanibiomedj.13.2.20 

https://www.sciencedirect.com/science/article/abs/pii/S0925231217300577
https://doi.org/10.1016/j.neucom.2017.01.026
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Zhou+L%2C+Pan+S%2C+Wang+J%2C+Vasilakos+AVJN.+Machine+learning+on+big+data%3A+Opportunities+and+challenges.+2017%3B237%3A350-61.&btnG=
https://www.ahajournals.org/doi/full/10.1161/STROKEAHA.118.024293
https://doi.org/10.1161/STROKEAHA.118.024293
https://www.ncbi.nlm.nih.gov/pubmed/30890116
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Heo+J%2C+Yoon+JG%2C+Park+H%2C+Kim+YD%2C+Nam+HS%2C+Heo+JHJS.+Machine+learning-based+model+for+prediction+of+outcomes+in+acute+stroke.+2019%3B50%285%29%3A1263-5.&btnG=
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010357
https://doi.org/10.1371/journal.pcbi.1010357
https://www.ncbi.nlm.nih.gov/pubmed/35951526
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Diaz-Uriarte+R%2C+G%C3%B3mez+de+Lope+E%2C+Giugno+R%2C+Fr%C3%B6hlich+H%2C+Nazarov+PV%2C+Nepomuceno-Chamorro+IA%2C+et+al.+Ten+quick+tips+for+biomarker+discovery+and+validation+analyses+using+machine+le
https://www.sciencedirect.com/science/article/pii/S0026049518301707
https://doi.org/10.1016/j.metabol.2018.08.002
https://www.ncbi.nlm.nih.gov/pubmed/30098323
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Perakakis+N%2C+Yazdani+A%2C+Karniadakis+GE%2C+Mantzoros+CJM.+Omics%2C+big+data+and+machine+learning+as+tools+to+propel+understanding+of+biological+mechanisms+and+to+discover+novel+diagnostics+and+the
https://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/1328
https://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/1328
https://doi.org/10.33096/ilkom.v14i3.1328.218-228
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Imran+B%2C+Wahyudi+E%2C+Subki+A%2C+Salman+S%2C+Yani+AJIJI.+Classification+of+stroke+patients+using+data+mining+with+adaboost%2C+decision+tree+and+random+forest+models.+2022%3B14%283%29%3A218-28.&btnG
https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2021.728984/full
https://doi.org/10.3389/fneur.2021.728984
https://www.ncbi.nlm.nih.gov/pubmed/34744970
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mu+Q%2C+Zhang+Y%2C+Gu+L%2C+Gerner+ST%2C+Qiu+X%2C+Tao+Q%2C+et+al.+Transcriptomic+Profiling+Reveals+the+Antiapoptosis+and+Antioxidant+Stress+Effects+of+Fos+in+Ischemic+Stroke.+Frontiers+in+neurology.+2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mu+Q%2C+Zhang+Y%2C+Gu+L%2C+Gerner+ST%2C+Qiu+X%2C+Tao+Q%2C+et+al.+Transcriptomic+Profiling+Reveals+the+Antiapoptosis+and+Antioxidant+Stress+Effects+of+Fos+in+Ischemic+Stroke.+Frontiers+in+neurology.+2
https://www.nature.com/articles/4401648
https://doi.org/10.1038/sj.cdd.4401648
https://www.ncbi.nlm.nih.gov/pubmed/15861185
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Kurushima+H%2C+Ohno+M%2C+Miura+T%2C+Nakamura+TY%2C+Horie+H%2C+Kadoya+T%2C+et+al.+Selective+induction+of+DeltaFosB+in+the+brain+after+transient+forebrain+ischemia+accompanied+by+an+increased+expressio
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Kurushima+H%2C+Ohno+M%2C+Miura+T%2C+Nakamura+TY%2C+Horie+H%2C+Kadoya+T%2C+et+al.+Selective+induction+of+DeltaFosB+in+the+brain+after+transient+forebrain+ischemia+accompanied+by+an+increased+expressio
https://journals.sagepub.com/doi/abs/10.1177/0022034520962731
https://doi.org/10.1177/0022034520962731
https://www.ncbi.nlm.nih.gov/pubmed/33034243
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Wang+SK%2C+Zhang+H%2C+Hu+CY%2C+Liu+JF%2C+Chadha+S%2C+Kim+JW%2C+et+al.+FAM83H+and+Autosomal+Dominant+Hypocalcified+Amelogenesis+Imperfecta.+Journal+of+dental+research.+2021%3B100%283%29%3A293-301.&btn
https://publications.wehi.edu.au/Publications/13449
https://doi.org/10.1101/cshperspect.a026062
https://www.ncbi.nlm.nih.gov/pubmed/27141080
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Aubrey+BJ%2C+Strasser+A%2C+Kelly+GL.+Tumor-Suppressor+Functions+of+the+TP53+Pathway.+Cold+Spring+Harbor+perspectives+in+medicine.+2016%3B6%285%29.&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Aubrey+BJ%2C+Strasser+A%2C+Kelly+GL.+Tumor-Suppressor+Functions+of+the+TP53+Pathway.+Cold+Spring+Harbor+perspectives+in+medicine.+2016%3B6%285%29.&btnG=
https://www.nature.com/articles/srep08108
https://doi.org/10.1038/srep08108
https://www.ncbi.nlm.nih.gov/pubmed/25630554
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Meng+F-d%2C+Ma+P%2C+Sui+C-g%2C+Tian+X%2C+Jiang+Y-h.+Association+between+cytochrome+P450+1A1+%28CYP1A1%29+gene+polymorphisms+and+the+risk+of+renal+cell+carcinoma%3A+a+meta-analysis.+Scientific+Reports
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Meng+F-d%2C+Ma+P%2C+Sui+C-g%2C+Tian+X%2C+Jiang+Y-h.+Association+between+cytochrome+P450+1A1+%28CYP1A1%29+gene+polymorphisms+and+the+risk+of+renal+cell+carcinoma%3A+a+meta-analysis.+Scientific+Reports
https://link.springer.com/article/10.1007/s00415-024-12263-x
https://link.springer.com/article/10.1007/s00415-024-12263-x
https://doi.org/10.1007/s00415-024-12263-x
https://www.ncbi.nlm.nih.gov/pubmed/38502340
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Carnwath+TP%2C+Demel+SL%2C+Prestigiacomo+CJ.+Genetics+of+ischemic+stroke+functional+outcome.+Journal+of+neurology.+2024%3B271%285%29%3A2345-69.&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0149291818300523
https://www.sciencedirect.com/science/article/abs/pii/S0149291818300523
https://doi.org/10.1016/j.clinthera.2018.02.002
https://www.ncbi.nlm.nih.gov/pubmed/29500141
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Peng+C%2C+Ding+Y%2C+Yi+X%2C+Shen+Y%2C+Dong+Z%2C+Cao+L%2C+et+al.+Polymorphisms+in+CYP450+Genes+and+the+Therapeutic+Effect+of+Atorvastatin+on+Ischemic+Stroke%3A+A+Retrospective+Cohort+Study+in+Chinese+
https://www.massey.ac.nz/~rwang/publications/17-TNNLS-Zhang.pdf
https://www.massey.ac.nz/~rwang/publications/17-TNNLS-Zhang.pdf
https://doi.org/10.1109/TNNLS.2017.2673241
https://www.ncbi.nlm.nih.gov/pubmed/28422666
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Zhang+S%2C+Li+X%2C+Zong+M%2C+Zhu+X%2C+Wang+RJItonn%2C+systems+l.+Efficient+kNN+classification+with+different+numbers+of+nearest+neighbors.+2017%3B29%285%29%3A1774-85.&btnG=
https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1449158/full
https://doi.org/10.3389/fimmu.2024.1449158
https://www.ncbi.nlm.nih.gov/pubmed/39290696
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Wang+X%2C+Zhang+XY%2C+Liao+NQ%2C+He+ZH%2C+Chen+QF.+Identification+of+ribosome+biogenesis+genes+and+subgroups+in+ischaemic+stroke.+Frontiers+in+immunology.+2024%3B15%3A1449158.&btnG=
https://link.springer.com/article/10.1186/s12964-023-01404-w
https://doi.org/10.1186/s12964-023-01404-w
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Zhang+Y%2C+Li+N%2C+Kobayashi+S.+Paxillin+participates+in+the+sphingosylphosphorylcholine-induced+abnormal+contraction+of+vascular+smooth+muscle+by+regulating+Rho-kinase+activation.+Cell+Communication
https://www.sciencedirect.com/science/article/abs/pii/S0197018607000915
https://www.sciencedirect.com/science/article/abs/pii/S0197018607000915
https://doi.org/10.1016/j.neuint.2007.04.019
https://www.ncbi.nlm.nih.gov/pubmed/17532542
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Yi+JH%2C+Park+SW%2C+Kapadia+R%2C+Vemuganti+R.+Role+of+transcription+factors+in+mediating+post-ischemic+cerebral+inflammation+and+brain+damage.+Neurochemistry+international.+2007%3B50%287-8%29%3A1014-
https://journals.biologists.com/jcs/article/127/8/1672/54947/Paxillin-controls-endothelial-cell-migration-and
https://doi.org/10.1242/jcs.132316
https://www.ncbi.nlm.nih.gov/pubmed/24522185
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=German+AE%2C+Mammoto+T%2C+Jiang+E%2C+Ingber+DE%2C+Mammoto+A.+Paxillin+controls+endothelial+cell+migration+and+tumor+angiogenesis+by+altering+neuropilin+2+expression.+Journal+of+cell+science.+2014%3B1
https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2023.1294723/full
https://doi.org/10.3389/fneur.2023.1294723
https://www.ncbi.nlm.nih.gov/pubmed/38192576
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Liang+J%2C+Feng+J%2C+Lin+Z%2C+Wei+J%2C+Luo+X%2C+Wang+QM%2C+et+al.+Research+on+prognostic+risk+assessment+model+for+acute+ischemic+stroke+based+on+imaging+and+multidimensional+data.+Frontiers+in+neuro
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Liang+J%2C+Feng+J%2C+Lin+Z%2C+Wei+J%2C+Luo+X%2C+Wang+QM%2C+et+al.+Research+on+prognostic+risk+assessment+model+for+acute+ischemic+stroke+based+on+imaging+and+multidimensional+data.+Frontiers+in+neuro
http://dx.doi.org/10.29252/jorjanibiomedj.13.2.20

	Introduction
	Methods
	Results
	Discussion
	Conclusion
	Acknowledgement
	Funding sources
	Ethical statement
	Conflicts of interest
	Author contributions
	Data availability statement
	References

