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Introduction 

Today, increased consumption of a high-fat diet (HFD) and reduced physical 

activity are associated with metabolic complications such as obesity and 
metabolic syndrome. The process of increasing fat accumulation increases the 

infiltration of macrophages and, subsequently, chronic inflammation, which 

plays an essential role in insulin resistance (1,2). Thus, excessive fat 
accumulation is associated with a decrease in the sensitivity of glucose absorption 

and the re-esterification of free fatty acids (FFA), as well as an increase in 

lipolysis resistance due to the inhibitory effect of insulin in the abdominal and 
peripheral adipose tissue (3). Maintaining normal glucose homeostasis may be 

part of a plan to treat or prevent obesity and diabetes. Using animals for scientific 

purposes is a longstanding biological research and medicine practice. The 
remarkable anatomical and physiological similarities between humans and 

animals, particularly mammals, have prompted researchers to investigate a large 

range of mechanisms and assess novel therapies in animal models before 
applying their discoveries to humans (4). 

Numerous conflicting pathways make it difficult to activate and stop the 

synthesis of glucose because these pathways activate particular transcription 
factors, such as the forkhead box transcription factor O1 (FOXO1) (5). 

Substantial evidence indicates that FOXO1’s function depends on the modulation 

of downstream targets such as autophagy-associated genes, apoptosis, cell cycle 

arrest genes, anti-oxidative stress enzymes, and metabolic, as well as immune 
regulators (5,6). On the other hand, dysfunction of FOXO1 pathways leads to 

metabolic diseases such as diabetes, obesity, non-alcoholic fatty liver disease, and 

atherosclerosis (7). In obese or diabetic people, FOXO1-related gene expression 
increases some harmful characteristics related to obesity and diabetes, including 

hyperglycemia and glucose intolerance (8). In the liver, FOXO1 interacts with 

some other transcription factors such as PGC1α through its increasing role in the 
activity of enzymes or the expression of glucose-6-phosphatase (G6Pase) and 

phosphoenolpyruvate carboxylase (PEPC) genes to accelerate the process of 

gluconeogenesis, which leads to an increase in the release of hepatic glucose and 
an increase in blood glucose. Therefore, the acceleration of this process is 

accompanied by an increase in hepatic glucose release and hyperglycemia, 

especially in diabetic patients (9). Cells have a natural process called autophagy, 
which removes unnecessary or dysfunctional components through a lysosome-

dependent regulated mechanism that is caused by various diseases, including 

diabetes (10). However, some existing research claims that the autophagy 
pathway may itself be impaired in diabetes (11). Autophagy-related 5 (ATG5) is 

one of the most commonly targeted genes in autophagy gene editing assays (12). 

Previous research found that obesity significantly reduced autophagy in the liver 
of both genetic and dietary mice models and that diabetes impacted hepatic 

autophagy. This effect was evidenced by lower expression levels of light chain 3 

(LC3) and ATG5 (13). In line with previous studies, Xu et al. (2020) found that 
diabetes was characterized by lower expression of autophagy indicators in db/db 

mice livers, demonstrated by lower expression levels of LC3 and ATG5 proteins 

(14). Hence, the study of ATG5 is being considered in the context of diabetes.  
Previous studies have shown that exercise training with different intensities 

and training protocols has different effects on fat oxidation (15-17). It has also 

been reported that the minimum intensity for affecting lipids is an intensity of 
75% of the maximum heart rate (MHR). Performing exercise training and 

decreasing inflammation levels are associated with reduced risk of T2DM and 
obesity (18). Regular exercise training not only helps prevent T2DM but also 

improves diabetes-related indicators such as body mass index (BMI), blood 

glucose, insulin sensitivity, lipid profile, oxidative stress/antioxidant capacity, 
and chronic inflammation (19,20). Therefore, it is recommended to increase daily 

exercise and plan exercise routines as a part of the treatment for T2DM (20). It 

has been discovered that high-intensity interval training (HIIT) is superior to 
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moderate-intensity continuous training (MICT) in terms of enhancing skeletal 

muscle strength, insulin sensitivity, mitochondrial biogenesis, glucose regulation, 

athletic ability, blood pressure, HDL-cholesterol, and cardiorespiratory fitness 
(21). Medicinal herbs are frequently used to treat T2DM. Reactive oxygen 

supplementation should be taken into consideration in T2DM patients in order to 

reduce increases in reactive oxygen species (ROS) after exercise. Flavonoids 
have demonstrated significant effects in the reduction of T2DM and prevention 

of cardiovascular disease (22). It is indicated that quercetin has beneficial effects, 

such as antioxidants, lowering blood glucose, dilating blood vessels, anti-
inflammatory, anti-apoptotic, anti-atherogenic, and reducing blood lipids (23). 

Abnormal accumulation of lipid droplets is a vital hallmark of related diseases, 

including diabetes, obesity, and atherosclerosis. Therefore, for the diagnosis of 
diabetes, it is essential to develop a method of monitoring lipid droplets and 

viscosity simultaneously (24). The effect of different intensities and models of 

exercise with equal calorie consumption during exercise on the lipid droplets of 
the liver has not been fully investigated. Therefore, the aim of the present study 

was to investigate the effect of eight weeks of MICT and HIIT training with 

quercetin supplementation on the gene expression of FOXO1 and ATG5 in the 
liver of diabetic obese male Wistar rats. 
 

Methods 

Forty-two Wistar male rats (weight: 125-130 g, age: 8 weeks) were purchased 
from the Animal Care Center of the University of Mohaghegh Ardabil. The rats 

were divided into seven groups and six rats were placed in each group (n=6): 

healthy control group (HC), diabetes control group (DC), diabetic quercetin 
group (DCQ), high-intensity interval training with diabetes (DH), moderate-

intensity continuous training with diabetes group (DM), diabetic high-intensity 

interval training with quercetin group (DHQ), and diabetic moderate-intensity 
continuous training with quercetin group (DMQ). Rats were housed in controlled 

environments with a light-dark cycle of 12 hours and an average temperature of 

22±3 degrees Celsius. Diabetic, control, and healthy groups were kept in separate 
cages (3 rats in each cage). Eight weeks of HFD exposure and a modest dosage 

of 25 mg/kg i.p. streptozotocin (STZ) were utilized to produce T2DM. The best 

STZ dosage for HFD rats was chosen using data from a previous investigation 
(25). A volume equal to citrate buffer was also administered to the HC group of 

non-diabetic rats. To prepare HFD, 1% cholesterol powder, and 1% special 100% 

corn oil were added to the standard food (24).  Rats with fasting blood glucose 
levels between 200 mg/dL and 400 mg/dL were classified as diabetic samples. 

One week after STZ administration, rats were given a small lancet wound on the 

tail vein and a drop of blood was placed on a glucometer strip. The strip was then 
measured by a glucometer device (Infopia Easy Gluco blood glucose monitor, 

South Korea). Inclusion criteria should not be confused with animal 

characteristics but can be related to these (e.g., body weights must be within a 
certain range for a particular procedure or blood glucose levels must be between 

200 mg/dL and 400 mg/dL). 

MICT & HIIT training protocols 

HIIT and MICT protocols, with a frequency of 5 times a week, totaling 40 
training sessions, were performed on a treadmill. MICT exercise protocol 

consisted of a 10-minute warm-up to 33–49% of the rat’s maximal aerobic speed 

(MAS). Then, it was followed by 50 minutes of running at 65% MAS. The 
training ended with an active recovery of three minutes at 20–30% of the rat’s 

MAS (26). The highest running duration and speed were recorded to determine 

the values of MAS. The MAS values of each rat were determined at the beginning 
and after two, four, six, and eight weeks. The protocol for the MAS test involved 

an exercise session in which the starting speed of 10 m/min was progressively 

increased every 60 seconds by 3.33 m/min until reaching 26.7 m/min. The speed 

was then increased by 1.7 m/min until the rats could no longer continue running. 

(27). HIIT sessions consisted of 7–10 exercise bouts with an intensity between 

80- 95% of MAS, which was followed by 60 seconds of active recovery with an 
intensity of 45–50% of MAS. Before and after each HIIT session, rats underwent 

the treadmill exercise for 5 min at 10 m/min warm-up and cool-down (Table 1). 
 

 

Measurement of blood glucose and body weight 

Before HFD and 48 hours following the most recent training session, the tail vein 

blood was obtained while on an overnight fast. Then, blood glucose concentration 

was directly assessed using a glucometer (Infopia Easy Gluco blood glucose 
monitor, South Korea). Values for body weight were taken before HFD exposure, 

following HFD, and 48 hours following the most recent training session. Blood 

samples were taken from the retro-orbital venous sinus using a standard test kit 

and centrifuged for five minutes at 5000 rpm to separate the serum.  

The process of Real-time PCR 

Rats were anesthetized by intraperitoneal injection of 20-30 mg/kg of 10% 
ketamine and 2-3 mg/kg of xylazine 2%. Then, the liver tissues were quickly 

separated, washed in a normal saline solution, and frozen in liquid nitrogen-free 

RNAase and DNAase microtubes to prevent any contamination for mRNA 
purification and real-time PCR. RNA was extracted using the Total RNA 

Extraction kit reagent in accordance with the manufacturer's guidelines (Pars 

Toss, Iran). After extracting RNA, real-time PCR was used to measure the 
expression of mRNA by the Lava 96 Real-time PCR Detection System (Daan 

Gene Co Ltd), and the kit used in the research was also 2X SYBR Green Real-

Time PCR (Pars Toss, Iran). The real-time PCR reaction was performed with 6.25 
microliters of master mix, 0.25 microliters of forward primer, 0.25 microliters of 

reverse primer, and 3 microliters of cDNA with 2.75 microliters of water. 

Comparative expression values of FOXO1 and ATG5 genes compared to the 
expression of GAPDH in each tissue were evaluated by Light Cycler SW1.1 

software. The relationship 2-ΔΔCt was used for evaluation and reporting. 

Following the previously stated protocol, two repeats of the real-time PCR 
reaction were carried out on each sample, and each gene and two repetitions of 

the calculation of the average Ct values of various dilutions were made. Table 2 

presents the sequence of the primers used in the present study to investigate 
FOXO1 and ATG5 gene expression. 
 

 

Statistical analysis  

Shapiro-Wilk and Levene’s tests confirmed the normality and the homogeneity 

of all the variances. The two-way analysis of variance test was used to investigate 

the difference in glucose changes and animal body weight, and the one-way 
analysis of variance (ANOVA) was used to test the values of gene expression 

change of FOXO1 and ATG5 between different groups after eight weeks of 

interventions. Tukey's post-hoc test was used to analyze the variance for the pair 
comparison. The statistical analyses were conducted using SPSS software 

version 26, with a significance level 0.05. 
 

Results 

Blood glucose and body weight after interventions 

The results of the two-way analysis of variance test for blood glucose levels 

showed that the time effect (P-Value=0.001 and f=1597.48), group effect (P-
Value=0.001 and f=67.37), and the interaction between time and group (P-

Value=0.001 and f=52.92) was significant. The results of Tukey's post-hoc test 
showed that the induction of diabetes significantly increased the blood glucose 

levels of rats, but eight weeks of quercetin injection alone and combined with 

HIIT and MICT training and HIIT and MICT training alone controlled the blood 
levels of the diabetic rats (P-Value>0.001) (Figure 1). The results of the two-way 

analysis of variance test for the amount of weight changes showed that the time 

effect (P-Value=0.001 and f=6565.83), group effect (P-Value=0.001 and f=81.22) 
and the interaction of time and group (P-Value=0.001 and f=67.37) was 

significant. The results of Tukey's post-hoc test showed that the induction of 

obesity significantly increased the body weight levels of rats, but eight weeks of 
exercise intervention and quercetin injection, weight changes in DH, DM, DHQ, 

and DMQ groups were significantly decreased compared to DC and DCQ groups 

(P-Value<0.05) (Figure 2). 

Gene expression of FOXO1 and ATG5 after interventions 

Since the sample we needed was liver tissue, we had one measurement for gene 

expression. In addition, training groups were compared with the control group to 

measure the changes after the investigation. The result of one-way ANOVA 
showed that there was a significant difference between seven groups for FOXO1 

and ATG5 gene expression with the significance level of (P-Value=0.001) and 

(P-Value=0.001), respectively (Table 3). Induction of T2DM increased (3.14 
unit) and decreased (0.7 unit) gene expression of FOXO1 (P-Value=0.001) and 

ATG5 (P-Value=0.001), respectively in liver tissue which was obtained by 

comparing the DC group with the HC group. The results of According to Tukey's 
post-hoc test for FOXO1 gene expression, there was a significant decrease in the 

DH group by 2.69 units, in the DM group by 2.01 units, in the DHQ group by 

2.08 units, and in the DMQ group by 1.71 units, compared to the DC group (with 
a P-value of 0.001 for all groups). In addition, there was not any significant 

difference between all training groups with DHQ and DMQ and without 

quercetin DH and DM supplementation (P-Value>0.05) (Table 3 and Figure 3). 
According to the results of Tukey's post-hoc test for ATG5 gene expression, there 

was a significant increase in the DH (0.41 unit), DM (0.38 unit), DHQ (0.51 unit) 

and DMQ (0.42 unit) groups compared to the DC group. The p-values for these 
comparisons were all 0.001. There was no significant difference observed 

between all training groups with and without quercetin supplementation in DHQ 

and DMQ (P-Value>0.05) (Table 3 and Figure 4). 

Table 1. HIIT training protocol 

Active 

recovery 

(m/min) 

Total exercise time 

in a session (min) 

Bout 

duration (s) 

Intensity 

(% MAS) 

Number of 

boots 
Weeks 

10 24 60 80 7 1 

10 24 60 80 7 2 

11 26 60 85 8 3 

11 26 60 85 8 4 

12 28 60 90 9 5 

12 28 60 90 9 6 

13 30 60 95 10 7 

13 30 60 95 10 8 

 

Table 2. The sequence of primers for quantitative real-time PCR 

Genes Forward Reverse 

FOXO1 CAGCCAGGCACCTCATAACA TCAAGCGGTTCATGGCAGAT 

ATG5 CGTGCAAGGATGCAGTTGAG TTCTGCAGTCCCATCCAGAG 

GAPDH AGGAAATGATGACCTCCTGAACT TGTTTTTGTAAGTATCTTGGTGCCT 
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Discussion 

This study aimed to investigate the impact of different-intensity exercise (HIIT 
and MICT) on the gene expression of FOXO1 and ATG5 in the liver of diabetic 

HFD-fed rats. The results showed that although inducing T2DM increased blood 

glucose levels, body weight, as well as gene expression of FOXO1, and decreased 
gene expression of ATF5 in the liver of diabetic obese rats, the implementation 

of MICT and HIIT exercises with and without quercetin supplementation for 8 

weeks-controlled changes in the mentioned indicators. The most important 
finding of this study was the effect of quercetin on the blood glucose decreasing. 

In previous research, quercetin, one of the most widespread flavonoids in plants, 

has been reported as an effective factor in reducing the risk of T2DM in 
epidemiological research (28). Potential anti-diabetic effect of quercetin has been 

observed in in vivo and in vitro laboratory studies, which involves several basic 

mechanisms, including stimulation of insulin secretion, anti-oxidative and anti-
inflammatory protection of the pancreas (29). In line with the result of the present 

study, it has been observed in a study that the intervention with quercetin in rats 

under a high-fat, high-carbohydrate diet caused a significant decrease in blood 
glucose (30). In general, polyphenols have potential effects on reducing insulin 

resistance by increasing the transfer of GLUT4 to the cell membrane of muscle 

and fat tissue, along with the induction of AMPK and PI3K pathways (31).  
The importance of FOXO1 in the liver cells of diabetic patients is so great 

that some laboratory science researchers have pointed to its effective role in high 

glucose levels or fasting hyperglycemia related to hepatic gluconeogenesis. 
Regarding FOXO1, the results of most studies have shown that exercise training 

causes significant increase (32,33), but some studies showed no significant 

change or its decrease after exercise (33,34). In the present study its gene 
expression decreased by different intensity exercises that is consistent with the 

results of some studies (35,36), and inconsistent with others (37,38). In this 

regard, the study by Slopack et al. (2014) showed that long-term resistance 
training leads to the reduction of FOXO1 protein levels from the tenth session 

onwards (35). The study findings of Soheili et al. (2018) showed that resistance 

training caused a significant decrease in fasting glucose, insulin resistance, and 
FOXO1 gene expression in the subcutaneous fat tissue of diabetic rats compared 

to the control group, and it indicates that resistance training inhibition of FOXO1 

gene expression in subcutaneous fat tissue leads to reduction of insulin resistance 
and serum glucose in diabetic rats (36). Contrary to the above-mentioned 

evidence, Karimi et al. (2018) showed that intense intermittent exercise caused 

 

Figure 1. Changes in blood glucose before diabetes induction, four weeks after diabetes 

induction and after eight weeks of intervention in different groups during 16 weeks of 

experiment. # Indicates a significant increase in DC, DH, DM, DHQ, and DMQ groups 

compared to the HC group, and * Indicates a significant difference between DCQ, DH, 

DM, DHQ, and DMQ groups compared to the DC group. Abbreviation: HC: Healthy 

Control group, DC: Diabetes Control group, DCQ: Diabetic Quercetin group, DH: 

High-intensity interval training with diabetes, DM: Moderate-intensity continuous 

training with Diabetes group, DHQ: Diabetic High-intensity interval training with 

Quercetin group, DMQ: Diabetic Moderate-intensity continuous training with 

Quercetin group. 

 

Figure 2. Changes in weight before and after high-fat food and after 8 weeks of 

intervention in different groups. # Indicates a significant increase in DC, DH, DM, DHQ, 

and DMQ groups compared to the HC group, and * Indicates a significant decrease in 

DH, DM, DHQ, and DMQ groups compared to DC and DCQ groups. Abbreviation: HC: 

Healthy Control group, DC: Diabetes Control group, DCQ: Diabetic Quercetin group, 

DH: High-intensity interval training with Diabetes, DM: Moderate-intensity continuous 

training with Diabetes group, DHQ: Diabetic High-intensity interval training with 

Quercetin group, DMQ: Diabetic Moderate-intensity continuous training with Quercetin 

group. 

Table 3. The results of one-way analysis of variance and Tukey's post-hoc test for two-

by-two comparison of groups for FOXO1 and ATG5 gene expression 

Tukey- test ATG5 
Tukey- test 

FOXO1 

P-Value Groups  P-Value Groups  

*0.001 HC 

DC 

*0.001 HC 

DC 

0.880 DCQ 0.571 DCQ 

*0.001 DH *0.001 DH 

*0.001 DM *0.001 DM 

*0.001 DHQ *0.001 DHQ 

*0.001 DMQ *0.001 DMQ 

*0.001 HC 

DM 

*0.001 HC 

DM 

*0.008 DCQ *0.009 DCQ 

0.090 DHQ 0.281 DHQ 

0.969 DMQ 0.496 DMQ 

0.859 DH 0.758 DH 

*0.009 HC 

DHQ 

*0.008 HC 

DHQ 
*0.001 DCQ *0.001 DCQ 

0.091 DH 0.835 DH 

0.359 DMQ 0.810 DMQ 

*0.008 HC 

DMQ 

*0.009 HC 

DMQ *0.001 DCQ *0.001 DCQ 

0.606 DH 0.999 DH 

*0.001 DCQ 
HC 

*0.001 DCQ 
HC 

*0.001 DH *0.001 DH 

*0.001 DH DCQ *0.001 DH DCQ 

* Indicates a significant difference. Abbreviation: HC: Healthy Control group, DC: 

Diabetes Control group, DCQ: Diabetic Quercetin group, DH: High-intensity interval 

training with Diabetes, DM: Moderate-intensity continuous training with Diabetes group, 

DHQ: Diabetic High-intensity interval training with Quercetin group, DMQ: Diabetic 

Moderate-intensity continuous training with Quercetin group. 

 

 

Figure 3. Changes in FOXO1 gene expression after eight weeks of intervention in 

different groups. * Indicates a significant decrease in DH, DM, DHQ, and DMQ groups 

compared to DC and DQ groups. Abbreviation: HC: Healthy Control group, DC: 

Diabetes Control group, DCQ: Diabetic Quercetin group, DH: High-intensity interval 

training with Diabetes, DM: Moderate-intensity continuous training with Diabetes 

group, DHQ: Diabetic High-intensity interval training with Quercetin group, DMQ: 

Diabetic Moderate-intensity continuous training with Quercetin group 

 

Figure 4. Changes in ATG5 gene expression after eight weeks of intervention in 

different groups. * Indicates a significant increase in DH, DM, DHQ and DMQ groups 

compared to DC and DQ groups. Abbreviation: HC: Healthy Control group, DC: 

Diabetes Control group, DCQ: Diabetic Quercetin group, DH: High-intensity interval 

training with Diabetes, DM: Moderate-intensity continuous training with Diabetes 

group, DHQ: Diabetic High-intensity interval training with Quercetin group, DMQ: 

Diabetic Moderate-intensity continuous training with Quercetin group. 
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an increase in the relative expression of FOXO1 in the pancreatic tissue of 

diabetic rats compared to the control group (37). There are different reasons for 

the differences between research results such as age of the subjects, gender, type 
of subject, tissue measured, type of training protocol. In addition, it can be said 

that the changes of FOXO1 in liver tissue and pancreas are not the same in 

response to exercise, it may be due to the different mechanisms of FOXO1 action 
in these tissues. Among the mechanisms of both exercises for decreasing in the 

gene expression of FOXO1, changes in SRA can be mentioned. SRA is a long 

non-coding RNA that has attracted increasing attention due to its important role 
in lipid metabolism. Mechanistically, aerobic exercise may inhibit FOXO1 

transcriptional activity by repressing SRA expression. The results of a study 

showed that SRA plays an important role in aerobic exercise to improve liver fat 
metabolism. So, maybe one of the controlling mechanisms for FOXO1 gene 

expression is SRA, because it is probably a key potential lncRNA to improve 

inflammatory response to hepatic steatosis through MAPK signaling pathway 
(39). Based on the available evidence on the effective role of protein or BIF levels 

on hepatic glucose release, the decrease in blood glucose in the exercise group 

may be attributed to the decrease in FOXO1 expression caused by HIIT and 
MICT exercise in liver cells (40,41). 

The other gene measured in the present study was ATG5 and the results 

showed that inducing T2DM decreased its gene expression levels, but 8 weeks of 

MICT and HIIT exercises with and without quercetin supplementation increased 

its gene expression in the liver of rats. In the field of ATG5 changes following 

exercise training, there are limited studies, and research results are different, as 
we can see in the study by Daneshyar et al. (2020) study results showed that six 

weeks of exercise did not change ATG5 levels (42) which is inconsistent with the 
current study result. While Pinto et al. (2021) investigated the comparison of a 

session of strength training, endurance training, training until exhaustion and 

concurrent training on TAG5 levels in the liver and heart of rats. The results 
showed that only exercise until exhaustion caused a significant decrease in this 

gene (43). There are different reasons for these different results such as the 

training protocol, the measured tissue, and the type of subjects exercising. The 
existence of genes related to autophagy is very necessary in the formation of auto 

phagosome in the signaling pathway. It has been suggested, one of the important 

factors for increasing the amount of cellular autophagy is exercise training: 
because exercise training causes stimulation such as hypoxia, possible structural 

damage to cell and increase or change of immune system factors increase 

autophagy (44). In relation to the increase of this gene following exercises in the 
present study, it is suspected that ATG5 is accompanied by high-fat nutrition and 

the accumulation and breakdown of triglycerides in fat cells of liver occur 

successively in the exercise condition. In this condition, the interaction of 
lipogenesis and the interaction of lipolysis and lipophagy are more involved, 

which is probably associated with an increase in the amount of autophagy (45). 

Because in this case, the probability of consumption of intracellular organelles 
and the accumulation of biological macromolecules (which are autophagy 

triggers) increases. Studies have shown that the mechanisms of lipid catabolism, 

i.e., lipolysis and lipophagy, are completely related to each other, and the 
regulatory connection point between these mechanisms is AMPK, which has 

been proven to be stimulated by exercise (39). Based on the findings of studies, 

it can be suggested that exercises which were prescribed in this study can 
probably induce the expression of the ATG5 gene in the liver tissue (46). In 

general, it can be assumed that the increasing effect caused by the combination 

of HFD and exercise training in the expression of ATG5, which is an important 
factor in autophagy, is probably related to the complex metabolic interactions 

related to the sequential anabolism and catabolism of lipids in adipose tissue. 

However, this theory needs more research in the future. Limitations of the present 
study are the lack of measuring protein levels of the two mentioned genes and 

other effective factors in the process of autophagy. 

 

Conclusion 

It was observed that both types of MICT and HIIT exercises with and without 

quercetin supplementation had significantly affected the blood glucose, body 

weight as well as FOXO1 and ATG5 gene expression. Quercetin supplementation 
although decreased blood glucose levels, it had not any significant effect on gene 

expression of FOXO1 and ATG5. So, considering the effect of quercetin on blood 

glucose control and the effect of both exercise training on improving gene 
expression, these interventions can be considered for controlling of diabetes. 
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