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Abstract

Acute myocardial infarction (AMI) is one of the leading causes of morbidity

worldwide. Myocardial reperfusion is known as an effective therapeutic choice

against AMI. However, reperfusion of blood flow induces ischemia/reperfusion (I/R)

injury through different complex processes including ion accumulation, disruption of

mitochondrial membrane potential, the formation of reactive oxygen species, and so

forth. One of the processes that gets activated in response to I/R injury is autophagy.

Indeed, autophagy acts as a “double‐edged sword” in the pathology of myocardial I/R

injury and there is a controversy about autophagy being beneficial or detrimental. On

the basis of the autophagy effect and regulation on myocardial I/R injury, many

studies targeted it as a therapeutic strategy. In this review, we discuss the role of

autophagy in I/R injury and its targeting as a therapeutic strategy.
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1 | INTRODUCTION

Acute myocardial infarction (AMI) is one of the main causes of

morbidity and mortality worldwide (Mozaffarian et al., 2015).

Minimizing blood flow resumption time is critical to curing AMI

(Bangalore, Pursnani, Kumar, & Bagos, 2013). However, Jennings

(1960) described ischemia/reperfusion (I/R) injury as a phenomen-

on in which the restoration of blood flow leads to heart tissue

damages. Many complex processes are involved in I/R injury

including ion accumulation, disruption of mitochondrial membrane

potential, the formation of reactive oxygen species (ROS),

dysregulation of nitric oxide metabolism, endothelial dysfunction,

platelet aggregation, immune activation, apoptosis, and autophagy

(Turer & Hill, 2010).

The heart needs a constant energy supply for both diastolic

relaxation and contractility, which is often provided by mitochondria
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as adenosine triphosphate (ATP; Halestrap & Richardson, 2015). In

the myocardial ischemia, a state of energy shortage and ATP

depletion in the heart, mitochondrial function is considered as an

important factor (Xia, Li, & Irwin, 2016). Following ischemia and loss

of oxygen, anaerobic glycolysis is the most dominant metabolism

pathway, which leads to the accumulation of lactate and hydrogen

ions and subsequently results in intracellular acidosis (Buja, 2005). In

contrast, although inner mitochondrial membrane (IMM) usually is

impermeable, under ischemia injury and because of nutrient and

oxygen deprivation inner mitochondrial permeability transition pore

(mPTP) acts nonselectively, which leads to uncoupling of oxidative

stress, ATP hydrolysis, and increase in mitochondrial inorganic

phosphate (Di Lisa et al., 2011; Heusch, Boengler, & Schulz, 2010).

Owing to the pH drop and ATP depletion, activation of Na+/H+ ion

exchanger and Na+/HCO3
− transporter (Tani & Neely, 1989) and

inhibition of Na+/K+‐ATPase (Ibáñez, Heusch, Ovize, Van, & de Werf,

2015) resulting in intracellular Na+ accumulation (Xia et al., 2016)

occur. Sodium accumulation and changes in the Na+/Ca2+ transporter

system in the sarcolemma causes an increase in intracellular Ca2+

and mitochondria swelling (Di Lisa & Bernardi, 2006). When the

blood flow restores and respiratory chain re‐exposed to oxygen, ROS

production exacerbates, which finally leads to cell death (Xia et al.,

2016). Under I/R injury and in response to oxidative stress and

energy depletion, the autophagy process is also activated. It has been

shown that autophagy acts as a “double‐edged sword” in the

pathology of I/R injury (Ma, Wang, Chen, & Cao, 2015). In this

review, we discuss the role of autophagy in I/R injury and its

targeting as a therapeutic strategy.

2 | AUTOPHAGY

More than 50 years ago, the term “autophagy” (“self‐eating” in Greek)

was described by Christian de Duve. He described autophagy as a

phenomenon in which the cells digest cytoplasmic materials within the

lysosomes (Jiang & Mizushima, 2014). After several years, identifying

autophagy‐related proteins (ATGs) by Tsukada and Ohsumi (1993) has

attracted attention again toward autophagy. Both Christian de Duve

and Yoshinori Ohsumi earned the Nobel Prize in Physiology and

Medicine in 1974 and 2016, respectively (Dikic & Elazar, 2018).

Autophagy is an adaptive response to stressful situations including

starvation (Dikic & Elazar, 2018), hypoxia (Wu, Huang, & Zhang, 2015),

and infection (Choi, Bowman, & Jung, 2018). Indeed, autophagy is a

critical energy homeostasis process for the survival of vital cells during

a stressful situation by providing nutrients. In contrast, autophagy is a

cytoprotective system, which selectively eliminates harmful cytosolic

materials and damaged organelles (Dikic & Elazar, 2018). There are

different forms of autophagy including chaperon‐mediated autophagy,

macroautophagy, and microautophagy (Ma et al., 2015). In addition to

the three types, two other forms of autophagy called “DNautophagy”

and “RNautophagy” have been introduced for the degradation of DNA

and RNA in lysosomes, respectively (Fujiwara, Furuta, et al., 2013;

Fujiwara, Kikuchi, et al., 2013). The most well‐known form of autophagy

is macroautophagy in which both intracellular organelles and cytoplas-

mic proteins are degraded (Ma et al., 2015).

There are several important signaling mechanisms in regulating

autophagy of cardiomyocytes and in response to stressful conditions.

Here we focus on two of the most important pathways.

2.1 | Mechanistic target of rapamycin (mTOR)
pathway

The most dominant pathway of autophagy is the mTOR pathway

(Figure 1). mTOR, a serine/threonine kinase, acts through two

distinct multiprotein complexes, in which, only mTORC1 is directly

involved in autophagy (Bar‐Peled & Sabatini, 2014). In the normal

conditions, Unc‐51‐like kinase 1 (ULK1) is phosphorylated at serine

757 by mTORC1, leading to inhibition of autophagosome formation.

In response to stressful situations, such as starvation, the activity of

mTORC1 is reduced and autophagy gets activated (Kim, Kundu,

Viollet, & Guan, 2011). First, autophagy factors comprising of

Atg13, Atg101, ULK1, and RB1‐inducible coiled‐coil protein 1

(FIP200) translocate to autophagosome formation site and form

the ULK1 complex (Parzych & Klionsky, 2014). Phosphorylation of

the class III PI3K (PI3KC3) by ULK1 complex on the endoplasmic

reticulum structure called the omegasome leads to the generation

of phosphatidylinositol 3‐phosphate (PI3P). PI(3)P recruits the PI(3)

P‐binding proteins DFCP1 (double FYVE‐domain‐containing protein

1) and WIPI‐1/2 (WD repeat domain phosphoinositide‐interacting
proteins 1/2) to the omegasome, further leading to growth and

expansion of the omegasome (Ravikumar et al., 2010). In the

expansion step, Atg9‐containing vesicles also may deliver other

components, such as proteins and lipids to contribute to omega-

some growth (Karanasios et al., 2013; Manifava et al., 2016;

Nishimura et al., 2017). The most important step of omegasome

expansion is mediated by the Atg conjugation system, which

requires an ubiquitin‐like system (Nakatogawa, 2013). In one of

them, Atg12 conjugates to Atg5, which is mediated by Atg7 and

Atg10. Another one relies on Atg12‐Atg5 complex and Atg16L1,

which conjugate microtubule‐associated protein 1 light chain 3β

(LC3‐II) to phosphatidylethanolamine (Ravikumar et al., 2010). As a

result of omegasome expansion, autophagic bodies and materials

are surrounded and enveloped into the double‐membrane vesicle

known as the autophagosome (Farré & Subramani, 2016). In the

autophagosome maturation step, Atgs that are attached to the

outer membrane of autophagosome are detached and lysosomal

delivery machine including syntaxin 17, synaptosomal‐associated
protein 29, and vesicle‐associated membrane protein 8 are

recruited, and finally the autophagosomes fuse with lysosomes

(Diao et al., 2015; Itakura, Kishi‐Itakura, & Mizushima, 2012).

2.2 | 5′‐AMP‐activated protein kinase (AMPK) and
glycogen synthase kinase‐3β (GSK‐3β) pathway

The AMPK and GSK‐3β pathway are involved in activating autophagy

(Dikic & Elazar, 2018). When the cellular ATP level depletes and AMP/
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ATP ratio increases, liver kinase B1 promotes AMPK activation. The

AMPK phosphorylates and activates tuberous sclerosis complex 1/2

(TSC1/2), which inhibits Ras homolog enriched in brain, an activator of

mTORC1 (Esclatine, Chaumorcel, & Codogno, 2009). In a direct way,

AMPK disassociates ULK1 from mTORC1 by phosphorylating ULK1 at

serines 313 and 777 (Kim et al., 2011). During energy stress, very

similar to AMPK, GSK‐3β also phosphorylates TSC1/2, inhibits

mTORC1, and finally stimulates autophagy (Inoki et al., 2006).

3 | MITOPHAGY

There is a subset of macroautophagy called “mitophagy” in which

damaged mitochondria are cleared. Mitophagy is a protective form of

autophagy in the cardiac I/R injury (Ma et al., 2015). Under normal

conditions, where mitochondria are polarized, phosphatase and tensin

homolog‐induced putative kinase 1 (PINK1) is recruited to mitochondria

and degraded by matrix processing peptidases (matrix metalloproteinase)

and presenilin‐associated rhomboid‐like protein in the IMM, and then the

cleaved PINK1 is released into the cytosol (Matsuda et al., 2010). In

dysfunctional mitochondria that are depolarized, there is an insufficiency

in the membrane potential of mitochondria in transferring PINK1 to

IMM. In such cases, PINK1 degradation and cleavage are inactivated, thus

PINK1 accumulates at the outer membrane of the mitochondria (OMM;

Moreira, Estébanez, & Martínez‐Florez, 2017). PINK1 recruits Parkin

from the cytosol by phosphorylation of Parkin and ubiquitin. Then, Parkin

ubiquitinates its substrates on the OMM, such as voltage‐dependent
anion channel‐1 (VDAC1) and mitofusin 1 and 2. LC3 proteins on the

omegasome recognize the polyubiquitinated proteins through adaptor

proteins including p62, optineurin, and nuclear domain 10 protein 52

(Gkikas, Palikaras, & Tavernarakis, 2018). Furthermore, there is another

pathway of mitophagy called receptor‐mediated mitophagy in which

OMM proteins including BCL2/adenovirus E1B 19 kDa interacting

protein 3 (BNIP3), Nip3‐like protein X, and FUN14 domain‐containing
protein 1 (FUNDC1) through their BH3 domain interact with LC3 (Yoo &

Jung, 2018). Surprisingly, there are IMM proteins including prohibitin 2

and cardiolipin, which directly interact with LC3 (Chu et al., 2013; Shen,

Li, Gasparski, Abeliovich, & Greenberg, 2017; Wei, Chiang, Sumpter,

Mishra, & Levine, 2017). Under normal conditions, phosphorylation of

FUNDC1 by Src kinase and casein kinase 2 inhibits its attachment to LC3

and its OMM localization (Hamacher‐Brady, NRJC, & Sciences, 2016).

4 | AUTOPHAGY IN CARDIAC I/R INJURY

Owing to the critical role in controlling protein and organelle quality,

autophagy is fundamental for cardiac development, structure, and

function (Riquelme et al., 2016). It has been shown that knocking‐down

F IGURE 1 mTOR pathway and autophagy. LC3‐II: microtubule‐associated protein 1 light chain 3β; mTOR: mechanistic target of rapamycin;
PI3KC3: phosphorylation of the class III PI3K; PI3K: phosphoinositide 3‐kinase; ULK1: Unc‐51‐like kinase 1 [Color figure can be viewed at
wileyonlinelibrary.com]
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of beclin‐1, Atg5, or Atg7 during the development of cardiac embryo

leads to structural aberrations of the heart (Lee et al., 2014). In the

adult mice, inhibition of autophagy by knocking‐out of Atg5 causes

cardiomyopathy (Nakai et al., 2007). As autophagy is increased in some

cardiovascular disease including heart failure, dilated cardiomyopathy,

and anticancer drug‐induced cardiomyopathy (Xie, Morales, Lavandero,

& Hill, 2011) and diminished in some others, such as Danon disease

(Endo, Furuta, & Nishino, 2015), an overall control of autophagy in the

heart physiology is essential. About I/R injury, there is a controversy

about autophagy being beneficial or detrimental. Basal levels of

autophagy help the cell to maintain ATP levels by removing damaged

mitochondria, organelles, and recycling of catabolites (Li & Lerman,

2012). It has been verified that preconditioning cardiomyocytes with

autophagy inducers protect the cells after I/R injury (Khan et al., 2006).

In contrast, excessive autophagy leads to the degradation of pivotal

organelles and proteins, hence, result in organ dysfunction (Ma et anal.,

2015). Thus, alleviation of excessive autophagy during I/R injury may

prevent the death of cardiomyocytes, and thereby protect the cardiac

function (Huang et al., 2015). It has been shown that the inhibition of

BNIP3 and beclin‐1 protects the cardiac function against I/R injury

(Hamacher‐Brady et al., 2007; Valentim et al., 2006). Thus, targeting

autophagy to ameliorate I/R injury has attracted many attentions.

Table 1 summarizes the previous studies on targeting autophagy as a

therapeutic strategy in cardiac I/R injury.

4.1 | Targeting autophagy for its beneficial effects

Owing to antioxidant activity, pramipexole (PPX) inhibits the opening

of mPTP, which occurs because of ATP and ADP depletion and Ca2+

overload (Cassarino, Fall, Smith, & Bennett, 1998; Sayeed et al., 2006).

It has been shown that the number of autophagic bodies increases

following I/R injury in the myocardium (Mo, Tang, Ma, & Wu, 2016)

and autophagy is the main mechanism of cell death during I/R injury

(Sadoshima, 2008). Mo et al. (2016) reported that pretreatment with

PPX significantly reduced infarct size compared with the sham group

by increasing autophagy in the mice model of I/R injury. In addition,

PPX is able to reduce hypoxia/reoxygenation (H/R) injury and ROS

generation in cultured H9c2 cells. Because activation of AMPK

following PPX treatment was upregulated, its cardioprotective role

could be related to the upregulation of autophagy through the AMPK‐
mediated pathway (Mo et al., 2016).

Coenzyme Q10 (CoQ10), which is structurally similar to vitamin E

and vitamin K (Liang, Ping, & Ge, 2017), is a fat‐soluble substance and

a crucial component of mitochondria electron transport chain in the

ATP production (Khan et al., 2017). CoQ10 plays a central role in

mitochondria membrane integrity by preventing injuries due to

oxidative stress (Farhangi, Alipour, Jafarvand, & Khoshbaten, 2014;

Groneberg et al., 2005). It has been shown that CoQ10 has beneficial

effects in the prevention and treatment of hypertension, chronic

heart failure, arrhythmias, and ischemic heart disease (Kumar, Kaur,

Devi, & Mohan, 2009; Littarru, Tiano, Belardinelli, & Watts, 2011).

Liang et al. showed that intraperitoneal injection of CoQ10 in

soybean oil solvent 3 days before ischemia and the following

reperfusion until the end of the test led to improvements in cardiac

function including cardiac systolic and diastolic functions, reduction

of myocardial death and apoptosis, and reduction of antioxidant

levels in the rat model of I/R injury. They also revealed that CoQ10

significantly enhanced autophagy proteins including beclin‐1, Atg5,
and LC‐3II to LC‐3I ratio (Liang et al., 2017). Although CoQ10 has

protective effects against I/R injury, CoQ1, which is its derivative is

more effective in restoring the cardiac contractile function after

reperfusion but not the infarct size. This could be due to the high

antioxidant potential of CoQ1 (Ashitey et al., 2016).

Visnagin, which is extracted from Ammi visnaga, has shown

cardioprotective (Liu et al., 2014) and antihypertensive effects (Liu

et al., 2014). Fu et al. encapsulated visnagin in NIPAAm‐MMA

nanoparticle (NP) to investigate its impact on myocardial I/R injury.

Following intravenous injection of visnagin‐loaded NP in a rat model

of I/R, optical bioluminescence imaging data revealed that the

nanoparticle targeted encapsulated visnagin to the ischemic area for

protecting cardiomyocytes against I/R injury (Fu, Li, & Tan, 2018). It

has been shown that the reoxygenation of heart after I/R could

increase NP uptake via endocytosis (Cabigas et al., 2012). Visnagin‐
loaded NP was able to improve the systolic and diastolic function and

pressure and inhibit fibrosis. Further analyses demonstrated that

visnagin‐loaded NP improved cardiac function and reduced I/R injury

by enhancing autophagy and inhibiting apoptosis. The cardioprotec-

tive nature of visnagin could be related to the aryl hydrocarbon

receptor (AHR). As AHR is upstream of the beclin‐1:Bcl‐2 autophagy

regulatory complex, visnagin may inhibit the interaction between

beclin‐1 and Bcl‐2 by promoting AHR signaling (Fu et al., 2018).

Cellular repressor of E1A‐stimulated genes (CREG), which is a

secreted glycoprotein, could improve cardiac functions by weakening

myocardial fibrosis and inhibiting ventricular remodeling, suggesting

protective property of CREG against cardiac injury (Journet, Chapel,

Kieffer, Roux, & Garin, 2002; Xu, Liu, & Chen, 2004; Yan et al., 2015). It

was reported that the expression of CREG markedly decreases in

cardiac I/R mice model, whereas treatment with exogenous CREG

protein protects the heart from I/R injury by reducing infarct size and

apoptosis. Both in vivo and in vitro results demonstrated that the

overexpression of CREG increases autophagy. CREG is able to induce

autophagy by promoting early autophagosome formation (Song et al.,

2017). Many studies revealed that CREG is a lysosome‐regulated
protein that proteolytically matured through lysosomal cysteine

proteases (Qian, Sleat, Zheng, Moore, & Lobel, 2008; Schähs et al.,

2008). CREG has a mannose 6‐phosphate (M6P) recognition marker,

which targets it toward lysosome and interaction with M6P/insulin‐like
growth factor 2 receptor for efficient delivery to the lysosome (Sacher

et al., 2005). Also, CREG is able to enhance the acidic pH of lysosomes,

which is essential for the enzymatic digestion (Song et al., 2017).

Histone deacetylases (HDACs) are involved in the transcription of

DNA. Studies have reported their essential functions in the remodeling

of cardiac pathology including contractility, ventricular hypertrophy,

necrosis, fibrosis, and apoptosis (McKinsey, 2012). For example, valproic

acid and tributyrin as HDAC inhibitors reduce collagen deposition and

cardiomyocyte hypertrophy in a rat model of myocardial infarction (Lee,
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TABLE 1 Autophagy‐based therapeutic agents against cardiac I/R injury

Therapeutic agents
In vitro/

in vivo Dose
Effect on heart/

cardiomyocytes

Effect on

autophagy Mechanism of action References

PPX In vivo 1mg/kg ↓ Infarct size ↑ AMPK pathway (Mo et al., 2016)

In vitro 10 µM ↓ CK and LDH

↑ Cell viability

Berberine In vivo 10mg/kg ↓ Infarct size ↓ AMPK and mTORC2 pathway (Huang et al., 2015)

In vitro 20 µM ↑ Cardiac function

↑ Cell viability

TSA In vivo 0.1 mg/kg ↓ Infarct size ↓ NM (Zhang et al., 2018)

↑ Cardiac function

Crocin In vivo 50mg·kg−1·d−1 ↑ Cardiac function ↑ Akt/mTOR pathway (Zeng et al., 2016)

In vitro 10‐5 mol/L ↓ Infarct size

↓ Apoptosis

↓ CK and LDH

↑ Cell viability

CoQ10 ↑ Cardiac function

In vivo 6mg·kg−1·ml−1 ↓ Infarct size ↑ NM (Liang et al., 2017)

↓ Antioxidant levels

↓ Apoptosis

Danshensu In vitro 10 µM ↑ Cell viability ↓ mTOR pathway (Fan et al., 2016)

↓ CK and LDH

↓ Apoptosis

Visnagin‐loaded NP In vivo 2mg/kg ↑ Cardiac function ↑ NM (Fu et al., 2018)

↓ Infarct size

↓ Apoptosis

miR‐21 In vitro 50 nM ↓ Apoptosis ↓ Akt/mTOR pathway (Huang et al., 2017)

Choline In vivo 5mg/kg ↓ Apoptosis ↓ Akt/mTOR pathway (Hang et al., 2018)

↓ Myocardial fibers

CREG In vivo 0.3 mg·kg−1·d−1 ↓ Infarct size ↑ NM (Song et al., 2017)

↓ Apoptosis

BCF In vivo 20mg/kg ↓ CK and TNF‐α ↓ PI3K/Akt pathway (Jian et al., 2015)

↓ mPTP

↑ NO content

↓ Apoptosis

SAHA In vivo 30–300mg/kg ↓ Infarct size ↑ NM (Xie et al., 2013)

↑ Cardiac function

↓ Apoptosis

bFGF In vivo 2 µg ↑ Cardiac function ↓ PI3K/Akt/mTOR pathway (Wang et al., 2015)

In vitro 40 ng/ml ↓ Apoptosis

↓ Fibrosis

MHBFC In vivo 10mg/kg ↓ CK and TNF‐α ↓ PI3K/Akt pathway (Xuan et al., 2017)

↓ NO content

↓ Apoptosis

2% H2 In vivo above 10 ppm/g ↓ Infarct size ↓ NM (Gao et al., 2017)

↓ Troponin I

↓ ROS

Vitexin In vitro 50–100–200 µM ↓ Apoptosis ↓ PI3K/Akt/mTOR pathway (Tang et al., 2017)

In vivo 2–4–6mg/kg ↓ CK and LDH

↓ MDA

↑ SOD

Spermine In vitro 50 µM ↓ Apoptosis ↑ mTOR pathway (Duan et al., 2016)

↑ Cell viability

↓ CK

Note. AMPK: 5′‐AMP‐activated protein kinase; BCF: Bauhinia championii flavone; bFGF: basic fibroblast growth factor; CK: creatine kinase; CoQ10:

coenzyme Q10; CREG: cellular repressor of E1A‐stimulated genes; H2: hydrogen gas; LDH: lactate dehydrogenase; MDA: malondialdehyde;

MHBFC: 17‐methoxyl‐7‐hydroxy‐benzene‐furanchalcone; mPTP: mitochondrial permeability transition pore; mTORC: mammalian target of rapamycin

complex; NM: not mentioned; NO: nitric oxide; NP: nanoparticle; PI3K: phosphoinositide 3‐kinase; PPX: Pramipexole; ROS: reactive oxygen species;

SAHA: suberoylanilide hydroxamic acid; SOD: superoxide dismutase. TNF‐α: tumor necrosis factor α.
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Lin, & Chang, 2007). It has been shown that the overexpression of

cardiomyocyte‐specific HDAC increases I/R injury (Zhang et al., 2018)

and HDAC inhibitors reduce infarct size and increase cardiac function

(Granger et al., 2008). Xie et al. have examined the efficacy of

suberoylanilide hydroxamic acid (SAHA) or vorinostat, an HDAC

inhibitor, in a mice and rabbit model of I/R. They revealed that SAHA

is able to reduce infarct and preserve the heart function by promoting

autophagy and inhibiting apoptosis in the infarct border zone (Xie et al.,

2013). The beneficiary effect of SAHA may relate to the production of

ROS in promoting autophagy (Zhang & Ren, 2014). SAHA is a Food and

Drug Administration‐approved agent for treatment of cutaneous T‐cell
lymphoma. In cancer cells, SAHA is able to induce autophagy through

inhibition of mTOR (Bánréti, Sass, & Graba, 2013) and this mechanism

also could be related to protection against cardiomyocytes (Xie et al.,

2013). Thus, HDAC inhibitors could act as a therapeutic agent for

myocardial I/R injury.

4.2 | Targeting autophagy for its detrimental
effects

There is increasing evidence showing that ROS are important activators

of autophagy (Morales, Pedrozo, Lavandero, & Hill, 2014). It has been

shown that increased H2O2 generation during reperfusion is a major

inducer of autophagy, which leads to overexpression of beclin‐1.
Treatment with N‐2‐mercaptopropionyl glycine (MPG), an antioxidant,

vigorously downregulated beclin‐1 expression, suggesting that oxidative

stress may play a key role in mediating autophagy and upregulation of

beclin‐1 during I/R injury (Hariharan, Zhai, & Sadoshima, 2011). Zeng

et al. reported that the transcription factor NF‐κB mediated upregulation

of beclin‐1 during perfusion. They showed that ROS release following

cardiac I/R injury activated NF‐κB p65 and beclin‐1 in the area at risk

zone of the rabbit heart. Pyrrolidine dithiocarbamate (PDTC), an inhibitor

of NF‐κB, intervention significantly suppressed the p65 expression and

inhibited the extension of the area at risk zone (Zeng et al., 2013). In

another study, it has been found that the activity of toll‐like receptor 4

(TLR4)/NF‐κB p65 signaling pathway vigorously promoted autophagy in

myocardial I/R injury, and the inhibition of TLR4 inhibited apoptosis and

autophagy, therefore, attenuated I/R injury (Guo et al., 2016).

Protective effect of berberine, an isoquinoline alkaloid, against I/R

injury has been shown in the animal models (Chang et al., 2012; Huang

et al., 2015; Qin‐Wei & Yong‐Guang, 2016). Pretreatment of rats with

berberine (100mg·kg·−1·d−1 for 14 days) before induction of cardiac

I/R led to alleviation of myocardial I/R injury through suppression of

PI3K/AKT signaling and inflammatory responses (Qin‐Wei & Yong‐
Guang, 2016). In addition to inhibiting inflammatory responses,

berberine attenuated cardiac I/R injury by reducing oxidative stress

(Yu et al., 2016). In another study, Chang et al. (2012) revealed that

the treatment with berberine reduced infarct size and arrhythmias by

decreasing AMPK concentration and ADP/ATP and AMP/ATP ratio in

the risk area. Although AMPK acted as a chief regulator of energy

metabolism of myocardial during I/R by promoting glycolysis and fatty

acid oxidation (Chang et al., 2012), its persistent activation during

perfusion led to high levels of fatty acid oxidation, accumulation of

harmful by‐products of glycolysis including lactate and protons, and

finally further myocardial injury (Kudo, Barr, Barr, Desai, & Lopaschuk,

1995). However, Huang et al. showed that the cardioprotective

property of berberine could be related to its inhibitory effects on

autophagy. Berberine is able to reduce the expression of autophagy

markers including beclin‐1, BNIP3, and sirtuin 1. Furthermore,

elevated levels of p‐AMPK and p‐mTORC2 during H/R in H9c2 cells

are decreased by berberine (Huang et al., 2015). It has been shown

that the activation of AMPK led to the inhibition of mTORC1 (Gwinn

et al., 2008), which thereby induced autophagy (Rodríguez‐Vargas
et al., 2012). Unlike mTORC1, inhibition of mTORC2 alleviated

autophagy (Gurusamy et al., 2009).

Thermal conditions also affect cardiac I/R injury by mediating

autophagy. It has been shown that hypothermia is an effective

intervention in limiting cardiac injury during organ transplantation and

open heart surgery (Lampe & Becker, 2011). According to this fact,

Cheng et al. tested the hypothermia effects on I/R cardiomyocytes

injury and autophagy. They revealed that the ischemic and hypoxic

cells under hypothermia culture condition (32°C) had longer viability

when significantly compared with the cells under normoxic culture

condition (37°C). Because the hypothermia condition significantly

reduced autophagy in parallel with cell death, they claimed that the

cardioprotective effect of hypothermia is due to the alleviation of

autophagy (Cheng et al., 2013). Furthermore, hypothermia protects

cardiomyocytes from I/R injury through reduction of cell metabolism,

reduction of enzymatic reaction rates, maintenance of ATP, reduction

of gene expression and protein synthesis, improved pH management,

and enhanced ion management (Lampe & Becker, 2011). In contrast,

Chien et al. (2014) reported that progressive thermal preconditioning

reduced cardiac I/R injury by upregulating antiautophagic, antioxidant,

and antiapoptotic mechanisms.

Danshensu (DSS) is a water‐soluble constituent of the Chinese plant,
Salvia miltiorrhiza, with antioxidant activities (Tang et al., 2011), which

make it as a therapeutic option in several cardiovascular disorders in

Asian countries (Wang et al., 2017). It has been shown that DSS has

cardioprotective property against I/R injury, which is exhibited by

inhibiting apoptosis and decreasing ROS generation (Zhao, Jiang, Zhao,

Hou, & Xin, 1996; Zhou et al., 2012). Because the opening of mPTP is

the fundamental culprit of I/R injury and c‐subunit of ATP synthase is

the main constituent of mPTP, Gao et al. (2017) reported that DSS

protects against I/R injury by inhibiting the expression of c‐subunit of
ATP synthase. Other study demonstrated that preconditioning of

isolated rat cardiomyocytes increases cell viability. Further analyses

revealed that DSS attenuates dysfunction of cardiomyocytes and

protects rat hearts during H/R injury by inhibiting excessive autophagy

and apoptosis. Upregulation of Bcl‐2, an antiapoptotic protein and

downregulation of beclin‐1, LC3, p62, caspase‐3, and Bax following the

DSS treatment have suggested a cross‐talk between the autophagy and

apoptosis during ischemic conditions. Therefore, upregulation of Bcl‐2
may affect the cardioprotective effect of DSS against I/R injury by

inhibiting apoptosis and preventing autophagy activation (Fan et al.,

2016). It has been shown that the formation of beclin‐1:Bcl‐2 complex

leads to negative regulation of autophagy (Pattingre et al., 2005).
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Furthermore, pretreatment with DSS vigorously increase mTOR

phosphorylation and its downstream targets, S6 and S6K, when

compared with the I/R group (Fan et al., 2016).

Dual‐specificity protein phosphatase (DUSP), which is also

referred as mitogen‐activated protein kinase (MAPK) phosphatase,

can phosphorylate dephosphorylated MAPKs in a conserved

Thr‐Xaa‐Tyr motif and, therefore, inactive them (Li, Yang, Guo,

Wang, & Li, 2015). Jin et al. demonstrated that the expression of

DUSP1 is downregulated after I/R injury. They also showed that the

size of the infarcted area was significantly reduced in DUSP1

transgenic mice compared with the control group. DUSP1 defi-

ciency led to an increase of JNK phosphorylation and activation.

Activated JNK phosphorylates BNIP3 and promoted excessive

mitophagy, leading to the destruction of mitochondrial energy

production. However, the reintroduction of DUSP1 alleviated

mitophagy and protected the hearts following I/R injury by

inactivating the JNK signaling (Jin et al., 2018). Confirming these

findings, Xu et al. (2015) stated that JNK activation aggravated

heart injury following I/R injury through the activation of apoptosis

and autophagy.

Choline, a precursor of acetylcholine (ACh), exhibited advantageous

effects on several heart disorders including ischemic arrhythmias (Wang

et al., 2012), myocardial infarction (Yang et al., 2005), and I/R injury

(Zhao et al., 2010). Hang et al. examined the effects of choline on

cardiac I/R injury and its underlying mechanisms. They reported that

pretreatment with choline significantly attenuated myocardial I/R injury

by inhibiting apoptosis and autophagy. Moreover, choline led to higher

expression of Akt/mTOR compared with the control group, whereas

rapamycin reversed the choline effects. The results suggested that

choline alleviated myocardial I/R injury by activating Akt/mTOR‐
dependent autophagy (Hang et al., 2018). In addition to the choline,

ACh also attenuated H/R injury by activating mitophagy through the

PINK1/Parkin pathway. As methoctramine (METH), an antagonist of the

M2 receptor, suppressed mitophagy activation by ACh, M2 receptor

mediated the effect of ACh on mitophagy (Sun et al., 2016).

microRNAs (miRNAs) are endogenous, single‐stranded, and non-

coding RNAs with a length of 21–25 nucleotides, which are involved in

regulating physiological and pathological processes (Goradel et al.,

2018). Many studies have examined the effects of miRNAs on the

cardiac I/R injury (Fan & Yang, 2015). For example, the cardioprotective

property of miR‐34a in I/R injury is related to the inhibition of

autophagy (Shao et al., 2017). According to the significantly lower

expression of miR‐34a in I/R and H/R models, Shao et al. (2017)

transfected hearts and isolated cardiomyocytes with miR‐34a over-

expressed adenovirus. Subsequent overexpression of miR‐34a led to a

decrease in apoptosis and autophagosome formation. Further analyses

revealed that the tumor necrosis factor α (TNF‐α) is the direct target of

miR‐34a in reducing autophagy during myocardial damage. These

results suggested the interaction between autophagy and inflammation

(Shao et al., 2017). To understand the association between autophagy

and inflammation in myocardial I/R injury, Meng et al. (2017) reported

that short‐hairpin RNA interference of nod‐like receptor protein 3

inflammasome reduced I/R injury by activating autophagy. However, the

miR‐34a role in cardiac I/R injury is contradictory. A study contrary to

Shao et al. demonstrated that the suppression of miR‐34a could rescue

myocardial I/R injury (Fu et al., 2017). Also, Wang et al. (2019) found

that the expression of miR‐34a was markedly increased in cardiac I/R

injury. Furthermore, it has been shown that I/R resulted in down-

regulation and upregulation of miR‐204 and autophagy, respectively.

Transfection of miR‐204 mimic into cardiomyocytes attenuated

autophagy (Xiao et al., 2011). Studies reported that miR‐21 expression

was downregulated in the infarcted hearts and vigorously increased in

the border area (Tu et al., 2013; Van Rooij et al., 2008). Huang et al.

showed that the expression of endogenous miR‐21 was decreased in

H9c2 cells following H/R injury. They also showed that the transfection

of cells under H/R injury with miR‐21 precursor led to significant

increase in miR‐21 expression, which attenuated autophagy and

apoptosis induced by H/R injury through PTEN/Akt/mTOR pathway

(Huang et al., 2017). It has been shown that miR‐21 induced Bcl‐2
expression by targeting Bcl‐2 mRNA (Dong, Zhao, Zhou, Zhang, & Chen,

2011), which could result in the inactivation of beclin‐1. Furthermore,

Seca et al. (2013) reported that treatment with an anti‐miR‐21 antibody

increased expression of ATGs including beclin‐1, LC3‐II, and Vps34

through the reduction of Bcl‐2 expression. Yang et al. demonstrated

that miR‐410 expression was meaningfully upregulated in a mice model

of cardiac I/R injury. Overexpression of miR‐410 during I/R injury was

correlated with inhibition of mitophagy and induction of apoptosis. They

identified that miR‐410 suppressed high‐mobility group box 1 protein

(HMGB1) so that transfection of cardiomyocytes with pcDNA3.1‐
HMGB1 promoted autophagy, reduced apoptosis, and improved

mitochondria function by modulating heat shock protein β1 (Yang, Li,

Dong, & Mi, 2018). Moreover, HMGB1 in collaboration with the TNF

promoted apoptosis of cardiomyocytes under I/R by JNK activation

(Shvedova, Anfinogenova, Atochina‐Vasserman, Schepetkin, & Atochin,

2018). miR‐30e is another miRNA involved in I/R injury through

autophagy, which was downregulated in patients with myocardial I/R

injury. Suppression of miR‐30e reduced apoptosis and increased

autophagic proteins including beclin‐1, LC3, and p62 in H9c2 cells.

Thus, miR‐30e exhibited a protective effect on cardiac I/R injury by

modulating autophagy and apoptosis (Zheng, Li, Kou, Yi, & Shi, 2018).

5 | CONCLUSION

In patients with AMI, myocardial reperfusion is an effective and timely

choice for ameliorating ischemia injury and reducing myocardial infarct

size. However, myocardial reperfusion can lead to cardiomyocyte death

through cardiac I/R injury. Unfortunately, there is no effective

therapeutic choice to prevent I/R injury. Some studies have revealed

autophagy as a main modulating process during myocardial I/R injury.

Therefore, the relationship between autophagy and I/R injury is unclear

and whether autophagy is beneficial or detrimental is controversial.

Several factors are involved in this controversy including timely

intervention, experimental models and their variability, and methods

for assessing autophagy. For this reason, further studies or discussions

are needed to reveal the underlying mechanisms of autophagy in
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reperfusion injury and to introduce it as a novel therapeutic strategy to

reduce myocardial I/R injury.
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